1,472 research outputs found

    Neutrino Bremsstrahlung Process in highly degenerate magnetized electron gas

    Full text link
    In this article the neutrino bremsstrahlung process is considered in presence of strong magnetic field, though the calculations for this process in absence of magnetic field are also carried out simultaneously. The electrons involved in this process are supposed to be highly degenerate and relativistic. The scattering cross sections and energy loss rates for both cases, in presence and absence of magnetic field, are calculated in the extreme-relativistic limit. Two results are compared in the range of temperature 5.9×1095.9\times 10^{9} K <T1011< T\leq 10^{11} K and magnetic field 1014101610^{14} - 10^{16} G at a fixed density 1015\sim 10^{15} gm/ccgm/cc, a typical environment during the cooling of magnetized neutron star. The interpretation of our result is briefly discussed and the importance of this process during the stellar evolution is speculated.Comment: 12 pages including 2 figures and 1 tabl

    Is the halo responsible for the microlensing events?

    Get PDF
    We discuss whether the astrophysical objects responsible for the recently reported microlensing events of sources in the Large Magellanic Cloud can be identified as the brown dwarf components of the spheroid of our galaxy, rather than the constituents of a dark baryonic halo.Comment: 10 pages, Postscript file (3 figures included). Talk given by E.R. in the 6^th Workshop on Neutrino Telescopes, Venice, February 199

    Accelerometry assessed physical activity of older adults hospitalized with acute medical illness - an observational study.

    Get PDF
    In a hospital setting and among older patients, inactivity and bedrest are associated with a wide range of negative outcomes such as functional decline, increased risk of falls, longer hospitalization and institutionalization. Our aim was to assess the distribution, determinants and predictors of physical activity (PA) levels using wrist-worn accelerometers in older patients hospitalized with acute medical illness. Observational study conducted from February to November 2018 at an acute internal medicine unit in the University hospital of Lausanne, Switzerland. We enrolled 177 patients aged ≥65 years, able to walk prior to admission. PA during acute hospital stay was continuously recorded via a 3D wrist accelerometer. Clinical data was collected from medical records or by interview. Autonomy level prior to inclusion was assessed using Barthel Index score. PA levels were defined as &lt; 30 mg for inactivity, 30-99 mg for light and ≥ 100 for moderate PA. Physically active patients were defined as 1) being in the highest quartile of time spent in light and moderate PA or 2) spending ≥20 min/day in moderate PA. Median [interquartile range - IQR] age was 83 [74-87] years and 60% of participants were male. The median [IQR] time spent inactive and in light PA was 613 [518-663] and 63 [30-97] minutes/day, respectively. PA peaked between 8 and 10 am, at 12 am and at 6 pm. Less than 10% of patients were considered physically active according to definition 2. For both definitions, active patients had a lower prevalence of walking aids and a lower dependency level according to Barthel Index score. For definition 1, use of medical equipment was associated with a 70% reduction in the likelihood of being active: odds ratio (OR) 0.30 [0.10-0.92] p = 0.034; for definition 2, use of walking aids was associated with a 75% reduction in the likelihood of being active: OR = 0.24 [0.06-0.89], p = 0.032. Older hospitalized patients are physically active only 10% of daily time and concentrate their PA around eating periods. Whether a Barthel Index below 95 prior to admission may be used to identify patients at risk of inactivity during hospital stay remains to be proven

    Peatlands and the carbon cycle: from local processes to global implications - a synthesis

    Get PDF
    Peatlands cover only 3% of the Earth's land surface but boreal and subarctic peatlands store about 15-30% of the world's soil carbon ( C) as peat. Despite their potential for large positive feedbacks to the climate system through sequestration and emission of greenhouse gases, peatlands are not explicitly included in global climate models and therefore in predictions of future climate change. In April 2007 a symposium was held in Wageningen, the Netherlands, to advance our understanding of peatland C cycling. This paper synthesizes the main findings of the symposium, focusing on (i) small-scale processes, (ii) C fluxes at the landscape scale, and (iii) peatlands in the context of climate change. The main drivers controlling most are related to some aspects of hydrology. Despite high spatial and annual variability in Net Ecosystem Exchange ( NEE), the differences in cumulative annual NEE are more a function of broad scale geographic location and physical setting than internal factors, suggesting the existence of strong feedbacks. In contrast, trace gas emissions seem mainly controlled by local factors. Key uncertainties remain concerning the existence of perturbation thresholds, the relative strengths of the CO2 and CH4 feedback, the links among peatland surface climate, hydrology, ecosystem structure and function, and trace gas biogeochemistry as well as the similarity of process rates across peatland types and climatic zones. Progress on these research areas can only be realized by stronger co-operation between disciplines that address different spatial and temporal scales

    HIGH SPIN ISOMERIC STATES IN 197Pb

    No full text
    High spin isomeric states in 197Pb have been investigated by in-beam gamma ray technics. These states are produced in (heavy ion, xn) reactions. various experiments performed are summarized in table I

    Crossover from Luttinger- to Fermi-liquid behavior in strongly anisotropic systems in large dimensions

    Full text link
    We consider the low-energy region of an array of Luttinger liquids coupled by a weak interchain hopping. The leading logarithmic divergences can be re-summed to all orders within a self-consistent perturbative expansion in the hopping, in the large-dimension limit. The anomalous exponent scales to zero below the one-particle crossover temperature. As a consequence, coherent quasiparticles with finite weight appear along the whole Fermi surface. Extending the expansion self-consistently to all orders turns out to be crucial in order to restore the correct Fermi-liquid behavior.Comment: Shortened version to appear in Physical Review Letter

    Neutrinos in Physics and Astrophysics

    Get PDF
    An elementary general overview of the neutrino physics and astrophysics is given. We start bya historical account of the development of our understanding of neutrinos and how theyhelp ed to unravel the structure of the Standard Model. We discuss whyit is so important to establish if neutrinos are massive and we introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed as well as the major role they play in astrophysics and cosmology.Ponencia presentada en 1999 Guanajuato Lectures on Astrophysics.Facultad de Ciencias Exacta

    Coulomb singularity effects in tunnelling spectroscopy of individual impurities

    Full text link
    Non-equilibrium Coulomb effects in resonant tunnelling processes through deep impurity states are analyzed. It is shown that Coulomb vertex corrections to the tunnelling transfer amplitude lead to a power-law singularity in current- voltage characteristicsComment: 7 pages, 2 figure

    Flavour Issues in Leptogenesis

    Full text link
    We study the impact of flavour in thermal leptogenesis, including the quantum oscillations of the asymmetries in lepton flavour space. In the Boltzmann equations we find different numerical factors and additional terms which can affect the results significantly. The upper bound on the CP asymmetry in a specific flavour is weaker than the bound on the sum. This suggests that -- when flavour dynamics is included -- there is no model-independent limit on the light neutrino mass scale,and that the lower bound on the reheat temperature is relaxed by a factor ~ (3 - 10).Comment: 19 pages, corrected equations for flavour oscillation

    Wear of human teeth: a tribological perspective

    Get PDF
    The four main types of wear in teeth are attrition (enamel-on-enamel contact), abrasion (wear due to abrasive particles in food or toothpaste), abfraction (cracking in enamel and subsequent material loss), and erosion (chemical decomposition of the tooth). They occur as a result of a number of mechanisms including thegosis (sliding of teeth into their lateral position), bruxism (tooth grinding), mastication (chewing), toothbrushing, tooth flexure, and chemical effects. In this paper the current understanding of wear of enamel and dentine in teeth is reviewed in terms of these mechanisms and the major influencing factors are examined. In vitro tooth wear simulation and in vivo wear measurement and ranking are also discussed
    corecore