27 research outputs found

    Pulsed 86Sr-labeling and NanoSIMS imaging to study coral biomineralization at ultra-structural length scales

    Get PDF
    A method to label marine biocarbonates is developed based on a concentration enrichment of a minor stable isotope of a trace element that is a natural component of seawater, resulting in the formation of biocarbonate with corresponding isotopic enrichments. This biocarbonate is subsequently imaged with a NanoSIMS ion microprobe to visualize the locations of the isotopic marker on sub-micrometric length scales, permitting resolution of all ultra-structural details. In this study, a scleractinian coral, Pocillopora damicornis, was labeled 3 times with 86Sr-enhanced seawater for a period of 48h with 5days under normal seawater conditions separating each labeling event. Two non-specific cellular stress biomarkers, glutathione-S-transferase activity and porphyrin concentration plus carbonic anhydrase, an enzymatic marker involved in the physiology of carbonate biomineralization, as well as unchanged levels of zooxanthellae photosynthesis efficiency indicate that coral physiological processes are not affected by the 86Sr-enhancement. NanoSIMS images of the 86Sr/44Ca ratio in skeleton formed during the experiment allow for a determination of the average extension rate of the two major ultra-structural components of the coral skeleton: Rapid Accretion Deposits are found to form on average about 4.5 times faster than Thickening Deposits. The method opens up new horizons in the study of biocarbonate formation because it holds the potential to observe growth of calcareous structures such as skeletons, shells, tests, spines formed by a wide range of organisms under essentially unperturbed physiological condition

    Arabidopsis S2Lb links AtCOMPASS-like and SDG2 activity in H3K4me3 independently from histone H2B monoubiquitination.

    Get PDF
    The functional determinants of H3K4me3, their potential dependency on histone H2B monoubiquitination, and their contribution to defining transcriptional regimes are poorly defined in plant systems. Unlike in Saccharomyces cerevisiae, where a single SET1 protein catalyzes H3K4me3 as part of COMPlex of proteins ASsociated with Set1 (COMPASS), in Arabidopsis thaliana, this activity involves multiple histone methyltransferases. Among these, the plant-specific SET DOMAIN GROUP 2 (SDG2) has a prominent role. We report that SDG2 co-regulates hundreds of genes with SWD2-like b (S2Lb), a plant ortholog of the Swd2 axillary subunit of yeast COMPASS. We show that S2Lb co-purifies with the AtCOMPASS core subunit WDR5, and both S2Lb and SDG2 directly influence H3K4me3 enrichment over highly transcribed genes. S2Lb knockout triggers pleiotropic developmental phenotypes at the vegetative and reproductive stages, including reduced fertility and seed dormancy. However, s2lb seedlings display little transcriptomic defects as compared to the large repertoire of genes targeted by S2Lb, SDG2, or H3K4me3, suggesting that H3K4me3 enrichment is important for optimal gene induction during cellular transitions rather than for determining on/off transcriptional status. Moreover, unlike in budding yeast, most of the S2Lb and H3K4me3 genomic distribution does not rely on a trans-histone crosstalk with histone H2B monoubiquitination. Collectively, this study unveils that the evolutionarily conserved COMPASS-like complex has been co-opted by the plant-specific SDG2 histone methyltransferase and mediates H3K4me3 deposition through an H2B monoubiquitination-independent pathway in Arabidopsis

    Pulsed 86Sr-labeling and NanoSIMS imaging to study coral biomineralization at ultra-structural length scales

    Get PDF
    A method to label marine biocarbonates is developed based on a concentration enrichment of a minor stable isotope of a trace element that is a natural component of seawater, resulting in the formation of biocarbonate with corresponding isotopic enrichments. This biocarbonate is subsequently imaged with a NanoSIMS ion microprobe to visualize the locations of the isotopic marker on sub-micrometric length scales, permitting resolution of all ultra-structural details. In this study, a scleractinian coral, Pocillopora damicornis, was labeled 3 times with Sr-86-enhanced seawater for a period of 48 h with 5 days under normal seawater conditions separating each labeling event. Two non-specific cellular stress biomarkers, glutathione-S-transferase activity and porphyrin concentration plus carbonic anhydrase, an enzymatic marker involved in the physiology of carbonate biomineralization, as well as unchanged levels of zooxanthellae photosynthesis efficiency indicate that coral physiological processes are not affected by the Sr-86-enhancement. NanoSIMS images of the Sr-86/Ca-44 ratio in skeleton formed during the experiment allow for a determination of the average extension rate of the two major ultra-structural components of the coral skeleton: Rapid Accretion Deposits are found to form on average about 4.5 times faster than Thickening Deposits. The method opens up new horizons in the study of biocarbonate formation because it holds the potential to observe growth of calcareous structures such as skeletons, shells, tests, spines formed by a wide range of organisms under essentially unperturbed physiological conditions

    Difference in the Pharmacokinetics and Hepatic Metabolism of Antidiabetic Drugs in Zucker Diabetic Fatty and Sprague-Dawley Rats

    Get PDF
    ABSTRACT The Zucker diabetic fatty (ZDF) rat, an inbred strain of obese Zucker fatty rat, develops early onset of insulin resistance and displays hyperglycemia and hyperlipidemia. The phenotypic changes resemble human type 2 diabetes associated with obesity and therefore the strain is used as a pharmacological model for type 2 diabetes. The aim of the current study was to compare the pharmacokinetics and hepatic metabolism in male ZDF and Sprague-Dawley (SD) rats of five antidiabetic drugs that are known to be cleared via various mechanisms. Among the drugs examined, metformin, cleared through renal excretion, and rosiglitazone, metabolized by hepatic cytochrome P450 2C, did not exhibit differences in the plasma clearance in ZDF and SD rats. In contrast, glibenclamide, metabolized by hepatic CYP3A, canagliflozin, metabolized mainly by UDP-glucuronosyltransferases (UGT), and troglitazone, metabolized by sulfotransferase and UGT, exhibited significantly lower plasma clearance in ZDF than in SD rats after a single intravenous administration. To elucidate the mechanisms for the difference in the drug clearance, studies were performed to characterize the activity of hepatic drug-metabolizing enzymes using liver S9 fractions from the two strains. The results revealed that the activity for CYP3A and UGT was decreased in ZDF rats using the probe substrates, and decreased unbound intrinsic clearance in vitro for glibenclamide, canagliflozin, and troglitazone was consistent with lower plasma clearance in vivo. The difference in pharmacokinetics of these two strains may complicate pharmacokinetic/ pharmacodynamic correlations, given that ZDF is used as a pharmacological model, and SD rat as the pharmacokinetics and toxicology strain

    Intercalation of ethidium bromide into a triple-stranded oligonucleotide.

    No full text
    We have examined the ability of a cationic planar chromophore, ethidium bromide, to intercalate into a short, defined triple helix. Using UV absorption, fluorescence spectroscopy and a gel retardation assay we demonstrate that ethidium bromide is able to bind to a triple helix with a lower affinity than to the corresponding duplex. Energy transfer from base triplets to ethidium shows that ethidium is intercalated into the triple helix. The spectroscopic characteristics of ethidium intercalated into a triplex are similar to those observed for intercalation into duplex DNA

    Conceptualizing important facets of teacher responses to student mathematical thinking

    No full text
    We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach. We conclude by making several further observations about the potential versatility and power in articulating units of analysis and developing and applying tools that attend to these facets when conducting research on teacher responses
    corecore