63 research outputs found
Towards Integration of CAx Systems and a Multiple-View Product Modeller in Mechanical Design
This paper deals with the development of an integration framework and its implementation for the connexion of CAx systems and multiple-view product modelling. The integration framework is presented regarding its conceptual level and the implementation level is described currently with the connexion of a functional modeller, a multiple-view product modeller, an optimisation module and a CAD system. The integration between the multiple-view product modeller and CATIA V5 based on the STEP standard is described in detail. Finally, the presented works are discussed and future research developments are suggested.
DFM synthesis approach based on product-process interface modelling. Application to the peen forming process.
Engineering design approach are curently CAD-centred design process. Manufacturing information is selected and assessed very late in the design process and above all as a reactive task instead of being proactive to lead the design choices. DFM appraoches are therefore assesment methods that compare several design alternatives and not real design approaches at all. Main added value of this research work concerns the use of a product-process interface model to jointly manage both the product and the manufacturing data in a proactive DFM way. The DFM synthesis approach and the interface model are presented via the description of the DFM software platform
DFM synthesis approach based on product-process interface modelling. Application to the peen forming process.
International audienceEngineering design approach are curently CAD-centred design process. Manufacturing information is selected and assessed very late in the design process and above all as a reactive task instead of being proactive to lead the design choices. DFM appraoches are therefore assesment methods that compare several design alternatives and not real design approaches at all. Main added value of this research work concerns the use of a product-process interface model to jointly manage both the product and the manufacturing data in a proactive DFM way. The DFM synthesis approach and the interface model are presented via the description of the DFM software platform
A Dynamic Contextual Change Management Application for Real Time Decision-Making Support
Decision making is a fundamental process within organizations for many reasons. It is indeed involved at all levels (new product decisions, management and marketing decisions, etc.) and has a direct impact on companiesâ efficiency and effectiveness. Many researches are conducted to enhance the decision-making process by proposing decision support systems where the most frequent challenge is the change management. Indeed, all businesses operate within an environment that is subject to constant changes (like new customersâ needs and requirements, organisational and technological changes, changes in key information used to derive decisions, etc.). These changes have a major impact on the quality and accuracy of the proposed decision if they are not detected and propagated, at the right time, during the decision-making process. The present work attempts to resolve this challenge by proposing a dynamic change management technique that allows three tasks to be automatically performed. First, continuously detect changes and note them. Second, retrieve from the detected changes those that are related to the decision rules. Finally, propagate them by computing the new value of the decision rule. The proposal has been fully implemented and tested in the supervision process of gas network exploitation.projet FUI Gontran
Bacterial Colonization of LowâWettable Surfaces is Driven by Culture Conditions and Topography
Effect of surface lowâwettability on bacterial colonization has become a prominent subject for the development of antibacterial coatings. However, bacteria's fate on such surfaces immersed in liquid as well as causal factors is poorly understood. This question is addressed by using a range of coatings with increasing hydrophobicity, to superhydrophobic, obtained by an atmospheric plasma polymer method allowing series production. Chemistry, wettability, and topography are thoroughly described, as well as bacterial colonization by in situ live imaging up to 24 h culture time in different liquid media. In the extreme case of superhydrophobic coating, substrates are significantly less colonized in biomoleculeâpoor liquids and for shortâterm culture only. Complex statistical analysis demonstrates that bacterial colonization on these lowâwettable substrates is predominantly controlled by the culture conditions and only secondary by topographic coating's properties (variation in surface structuration with almost constant mean height). Wettability is less responsible for bacterial colonization reduction in these conditions, but allows the coatings to preserve colonizationâprevention properties in nutritive media when topography is masked by fouling. Even after longâterm culture in rich medium, many large places of the superhydrophobic coating are completely free of bacteria in relation to their capacity to preserve air trapping
Product Lifecycle Management for Digital Transformation of Industries.
Currently, organizations tend to reuse their past knowledge to make good decisions quickly and effectively and thus, to improve their business processes performance in terms of time, quality, efficiency, etc. Process mining techniques allow organizations to achieve this objective through process discovery. This paper develops a semi-automated approach that supports decision making by discovering decision rules from the past process executions. It identifies a ranking of the process patterns that satisfy the discovered decision rules and which are the most likely to be executed by a given user in a given context. The approach is applied on a supervision process of the gas network exploitationFU
Effect of Austenite Deformation on the Microstructure Evolution and Grain Refinement Under Accelerated Cooling Conditions
Although there has been much research regarding the effect of austenite deformation on accelerated cooled microstructures in microalloyed steels, there is still a lack of accurate data on boundary densities and effective grain sizes. Previous results observed from optical micrographs are not accurate enough, because, for displacive transformation products, a substantial part of the boundaries have disorientation angles below 15 deg. Therefore, in this research, a niobium microalloyed steel was used and electron backscattering diffraction mappings were performed on all of the transformed microstructures to obtain accurate results on boundary densities and grain refinement. It was found that with strain rising from 0 to 0.5, a transition from bainitic ferrite to acicular ferrite occurs and the effective grain size reduces from 5.7 to 3.1 ÎŒm. When further increasing strain from 0.5 to 0.7, dynamic recrystallization was triggered and postdynamic softening occurred during the accelerated cooling, leading to an inhomogeneous and coarse transformed microstructure. In the entire strain range, the density changes of boundaries with different disorientation angles are distinct, due to different boundary formation mechanisms. Finally, the controversial influence of austenite deformation on effective grain size of low-temperature transformation products was argued to be related to the differences in transformation conditions and final microstructures
Integrated Design and PLM Applications in Aeronautics Product Development
Organised by: Cranfield UniversityWell known challenges in Aeronautic industry, namely reducing time to market, risks and development costs,
could be reached thanks to innovative design methods supported by PLM technologies. Such methods are
based on integrated design or collaborative engineering enabling close exchanges and cooperation between
the project partners. The paper proposes a survey on integrated design methods and PLM technologies. It
presents the development of a collaborative design platform, as part of SEINE project, which aims to
improve partnersâ cooperation in the French aeronautics supply chain. The paper also discusses how to
include multiple expertises and integrated design in this collaborative platform.Mori Seiki â The Machine Tool Compan
Productâprocess interface for manufacturing data management as a support for DFM and virtual manufacturing
This research work was supported by SNECMA as part of the MAIA ( http://www.le-webmag.com/article.php3?id_ article=2&lang=) project, the Region Champagne-Ardennes and Sisson Lehmann of the Wheelabrator group.In order to tackle a continuous improvement of virtual engineering, product modelling has to integrate more knowledge that refers to every decision taken during the product development process. Those decisions have to be related to the assessment of the whole product life cycle. This paper particularly addresses the domain of productâs industrialisation that aims at selecting the manufacturing processes. This selection must currently be done as soon as possible and has to be strongly linked with product definition and computer aided design (CAD) modelling. Thiswork first presents some new results concerning a productâprocess interface to integrate manufacturing information in the product model and how it leads to the definition of the CAD model. Then this interface that also manages specific information coming from the manufacturing process (tolerances, stresses gradientâŠ) is used to improve the wholemanufacturing process plan simulation. This process plan has, indeed, to track every material transformation issued from each manufacturing operation
Design and manufacturing interface modelling for manufacturing processes selection and knowledge synthesis in design
This research is part of the regional French project IFP2R : â Manufacturing constraints integration in rapid prototyped part design â with IFTS (Higher Technical Formation Institute of Charleville MĂ©ziĂšres- France).The research results presented in this paper are related to the specification of a method and models that tackle the problem of manufacturing processes selection and the integration, as soon as possible, of their constraints in the product modelling (i.e. information synthesis). This method is based on a skin and skeleton design/manufacturing interface model that ensures connection between design and manufacturing information. The use of these features is justified by their capacity to make a product representation which allows integration of both design and manufacture data and therefore assists the product breakdown definition (including the 3D forms) by least commitment. This method first analyses the product data issued from functional analysis and component selection (form, roughness, tolerance interval, etc.). Then, it deals with manufacturing information (manufacturing processes constraints). The approach is formalised with IDEF and UML models and has been consolidated with software developments based on C++ and open CASCADE technologies
- âŠ