56 research outputs found
Fabrication Development for SPT-SLIM, a Superconducting Spectrometer for Line Intensity Mapping
Line Intensity Mapping (LIM) is a new observational technique that uses
low-resolution observations of line emission to efficiently trace the
large-scale structure of the Universe out to high redshift. Common mm/sub-mm
emission lines are accessible from ground-based observatories, and the
requirements on the detectors for LIM at mm-wavelengths are well matched to the
capabilities of large-format arrays of superconducting sensors. We describe the
development of an R = 300 on-chip superconducting filter-bank spectrometer
covering the 120--180 GHz band optimized for future mm-LIM experiments,
focusing on SPT-SLIM, a pathfinder LIM instrument for the South Pole Telescope.
Radiation is coupled from the telescope optical system to the spectrometer chip
via an array of feedhorn-coupled orthomode transducers. Superconducting
microstrip transmission lines then carry the signal to an array of channelizing
half-wavelength resonators, and the output of each spectral channel is sensed
by a lumped element kinetic inductance detector (leKID). Key areas of
development include incorporating new low-loss dielectrics to improve both the
achievable spectral resolution and optical efficiency and development of a
robust fabrication process to create a galvanic connection between ultra-pure
superconducting thin-films to realize multi-material (hybrid) leKIDs. We
provide an overview of the spectrometer design, fabrication process, and
prototype devices.Comment: 7 pages, 7 figures, presented at 2022 Applied Superconductivity
Conferenc
Design of the SPT-SLIM focal plane: A spectroscopic imaging array for the South Pole Telescope
The Summertime Line Intensity Mapper (SLIM) is a mm-wave line-intensity mapping (mm-LIM) experiment for the South Pole Telescope (SPT). The goal of SPT-SLIM is to serve as a technical and scientific pathfinder for the demonstration of the suitability and in-field performance of multi-pixel superconducting filterbank spectrometers for future mm-LIM experiments. Scheduled to deploy in the 2023-24 austral summer, the SPT-SLIM focal plane will include 18 dual-polarisation pixels, each coupled to an R=λ/Δλ=300 thin-film microstrip filterbank spectrometer that spans the 2 mm atmospheric window (120–180 GHz). Each individual spectral channel feeds a microstrip-coupled lumped-element kinetic inductance detector, which provides the highly multiplexed readout for the 10k detectors needed for SPT-SLIM. Here, we present an overview of the preliminary design of key aspects of the SPT-SLIM focal plane array, a description of the detector architecture and predicted performance, and initial test results that will be used to inform the final design of the SPT-SLIM spectrometer array
Noise optimization for MKIDs with different design geometries and material selections
The separation and optimization of noise components is critical to microwave-kinetic inductance detector (MKID) development. We analyze the effect of several changes to the lumped-element inductor and interdigitated capacitor geometry on the noise performance of a series of MKIDs intended for millimeter-wavelength experiments. We extract the contributions from two-level system noise in the dielectric layer, the generation-recombination noise intrinsic to the superconducting thin-film, and system white noise from each detector noise power spectrum and characterize how these noise components depend on detector geometry, material, and measurement conditions such as driving power and temperature. We observe a reduction in the amplitude of two-level system noise with both an elevated sample temperature and an increased gap between the fingers within the interdigitated capacitors for both aluminum and niobium detectors. We also verify the expected reduction of the generation-recombination noise and associated quasiparticle lifetime with reduced inductor volume. This study also iterates over different materials, including aluminum, niobium, and aluminum manganese, and compares the results with an underlying physical model
A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set
We present a sample-variance-limited measurement of the temperature power
spectrum () of the cosmic microwave background (CMB) using observations of
a field made by SPT-3G in 2018. We report
multifrequency power spectrum measurements at 95, 150, and 220GHz covering the
angular multipole range . We combine this
measurement with the published polarization power spectrum measurements from
the 2018 observing season and update their associated covariance matrix to
complete the SPT-3G 2018 data set. This is the first analysis to
present cosmological constraints from SPT , , and power spectrum
measurements jointly. We blind the cosmological results and subject the data
set to a series of consistency tests at the power spectrum and parameter level.
We find excellent agreement between frequencies and spectrum types and our
results are robust to the modeling of astrophysical foregrounds. We report
results for CDM and a series of extensions, drawing on the following
parameters: the amplitude of the gravitational lensing effect on primary power
spectra , the effective number of neutrino species
, the primordial helium abundance , and the
baryon clumping factor due to primordial magnetic fields . We find that the
SPT-3G 2018 data are well fit by CDM with a
probability-to-exceed of . For CDM, we constrain the expansion
rate today to and the
combined structure growth parameter to . The SPT-based
results are effectively independent of Planck, and the cosmological parameter
constraints from either data set are within of each other.
(abridged)Comment: 35 Pages, 17 Figures, 11 Table
A measurement of the mean central optical depth of galaxy clusters via the pairwise kinematic Sunyaev-Zel'dovich effect with SPT-3G and DES
We infer the mean optical depth of a sample of optically-selected galaxy
clusters from the Dark Energy Survey (DES) via the pairwise kinematic
Sunyaev-Zel'dovich (kSZ) effect. The pairwise kSZ signal between pairs of
clusters drawn from the DES Year-3 cluster catalog is detected at
in cosmic microwave background (CMB) temperature maps from two years of
observations with the SPT-3G camera on the South Pole Telescope. After cuts,
there are 24,580 clusters in the deg of the southern sky
observed by both experiments. We infer the mean optical depth of the cluster
sample with two techniques. The optical depth inferred from the pairwise kSZ
signal is , while that inferred
from the thermal SZ signal is . The two measures agree at . We
perform a suite of systematic checks to test the robustness of the analysis
Flaring Stars in a Non-targeted mm-wave Survey with SPT-3G
We present a flare star catalog from four years of non-targeted
millimeter-wave survey data from the South Pole Telescope (SPT). The data were
taken with the SPT-3G camera and cover a 1500-square-degree region of the sky
from to in right ascension and
to in declination. This region was observed on a
nearly daily cadence from 2019-2022 and chosen to avoid the plane of the
galaxy. A short-duration transient search of this survey yields 111 flaring
events from 66 stars, increasing the number of both flaring events and detected
flare stars by an order of magnitude from the previous SPT-3G data release. We
provide cross-matching to Gaia DR3, as well as matches to X-ray point sources
found in the second ROSAT all-sky survey. We have detected flaring stars across
the main sequence, from early-type A stars to M dwarfs, as well as a large
population of evolved stars. These stars are mostly nearby, spanning 10 to 1000
parsecs in distance. Most of the flare spectral indices are constant or gently
rising as a function of frequency at 95/150/220 GHz. The timescale of these
events can range from minutes to hours, and the peak luminosities
range from to erg s in the SPT-3G frequency bands
Performance and characterization of the SPT-3G digital frequency-domain multiplexed readout system using an improved noise and crosstalk model
The third generation South Pole Telescope camera (SPT-3G) improves upon its predecessor (SPTpol) by an order of magnitude increase in detectors on the focal plane. The technology used to read out and control these detectors, digital frequency-domain multiplexing (DfMUX), is conceptually the same as used for SPTpol, but extended to accommodate more detectors. A nearly 5x expansion in the readout operating bandwidth has enabled the use of this large focal plane, and SPT-3G performance meets the forecasting targets relevant to its science objectives. However, the electrical dynamics of the higher-bandwidth readout differ from predictions based on models of the SPTpol system. To address this, we present an updated derivation for electrical crosstalk in higher-bandwidth DfMUX systems, and identify two previously uncharacterized contributions to readout noise. The updated crosstalk and noise models successfully describe the measured crosstalk and readout noise performance of SPT-3G, and suggest improvements to the readout system for future experiments using DfMUX, such as the LiteBIRD space telescope
Constraints on CDM Extensions from the SPT-3G 2018 and Power Spectra
We present constraints on extensions to the CDM cosmological model
from measurements of the -mode polarization auto-power spectrum and the
temperature--mode cross-power spectrum of the cosmic microwave background
(CMB) made using 2018 SPT-3G data. The extensions considered vary the
primordial helium abundance, the effective number of relativistic degrees of
freedom, the sum of neutrino masses, the relativistic energy density and mass
of a sterile neutrino, and the mean spatial curvature. We do not find clear
evidence for any of these extensions, from either the SPT-3G 2018 dataset alone
or in combination with baryon acoustic oscillation and \textit{Planck} data.
None of these model extensions significantly relax the tension between
Hubble-constant, , constraints from the CMB and from distance-ladder
measurements using Cepheids and supernovae. The addition of the SPT-3G 2018
data to \textit{Planck} reduces the square-root of the determinants of the
parameter covariance matrices by factors of across these models,
signaling a substantial reduction in the allowed parameter volume. We also
explore CMB-based constraints on from combined SPT, \textit{Planck}, and
ACT DR4 datasets. While individual experiments see some indications of
different values between the , , and spectra, the combined
constraints are consistent between the three spectra. For the full
combined datasets, we report , which is the tightest constraint on
from CMB power spectra to date and in tension with the most
precise distance-ladder-based measurement of . The SPT-3G survey is
planned to continue through at least 2023, with existing maps of combined 2019
and 2020 data already having lower noise than the maps used in
this analysis.Comment: Submitted to PRD; 19 pages, 7 figure
- …