16 research outputs found

    Phenotype determining alleles in GM1 gangliosidosis patients bearing novel GLB1 mutations

    No full text
    GM1 gangliosidosis manifests with progressive psychomotor deterioration and dysostosis of infantile, juvenile, or adult onset, caused by alterations in the structural gene coding for lysosomal acid β-galactosidase (GLB1). In addition allelic variants of this gene can result in Morquio B disease, a phenotype with dysostosis multiplex and entire lack of neurologic involvement. More than 100 sequence alterations in the GLB1 gene have been identified so far, but only few could be proven to be predictive for one of the GM1 gangliosidosis subtypes or Morquio B disease. We performed genotype analyses in sixteen GM1 gangliosidosis patients of all phenotypes and detected twenty-eight different genetic lesions. Among these, p.I55FfsX16, p.W65X, p.F107L, p.H112P, p.C127Y, p.W161X, p.I181K, p.C230R, p.W273X, p.R299VfsX5, p.A301V, p.F357L, p.K359KfsX23, p.L389P, p.D448V, p.D448GfsX8, and the intronic mutation IVS6-8A>G have not been published so far. Due to their occurrence in homozygous patients, four mutations could be correlated to a distinct GM1 gangliosidosis phenotype. Furthermore, the missense mutations from heteroallelic patients and three artificial nonsense mutations were characterized by overexpression in COS-1 cells and the subcellular localization of the mutant proteins in fibroblasts was assessed. The phenotype specificity of ten alleles can be proposed on the basis of our results and previous dat

    Excellent Response to a Ketogenic Diet in a Patient with Alternating Hemiplegia of Childhood

    No full text
    International audienceAlternating hemiplegia of childhood (AHC) is a rare disorder caused by heterozygous mutations in ATP1A3. AHC is associated with early-onset plegic and tonic/dystonic attacks and permanent neurologic deficits. Attacks tend to persist through life. Flunarizine therapy occasionally reduces the severity, duration and frequency of attacks. A ketogenic diet/modified Atkins diet (KD/MAD) can attenuate paroxysmal movement disorders associated with GLUT1 deficiency syndrome (GLUT1DS), but there are no reports on the effect of KD/MAD in AHC. We describe the case of a young girl with AHC who had tonic/dystonic and plegic attacks, mostly triggered by exercise, together with mild permanent dystonia and mental retardation. Her family had a history of dominant (three affected generations) paroxysmal exercise-induced dystonia. A history of plegic attacks that ceased after childhood was retraced from the medical records of the three affected adults, leading to the diagnosis of familial AHC due to ATP1A3 p.Asp923Asn mutation (Roubergue et al 2013). KD/MAD was considered for the proband when she was 3½ years old, following initial misdiagnosis of GLUT1DS. MAD, a KD variant, was chosen because it is easier to manage than KD and is similarly effective to KD in most GLUT1DS patients. MAD resulted in complete disappearance of the attacks during 15 months of follow-up. A modified Atkins diet had a sustained beneficial effect on attacks associated with AHC. Although preliminary, this observation suggests that a ketogenic diet might be a therapeutic option for paroxysmal disorders in some patients with alternating hemiplegia of childhood
    corecore