70 research outputs found
Robust Private Information Retrieval on Coded Data
We consider the problem of designing PIR scheme on coded data when certain
nodes are unresponsive. We provide the construction of -robust PIR schemes
that can tolerate up to unresponsive nodes. These schemes are adaptive
and universally optimal in the sense of achieving (asymptotically) optimal
download cost for any number of unresponsive nodes up to
Guess & Check Codes for Deletions and Synchronization
We consider the problem of constructing codes that can correct
deletions occurring in an arbitrary binary string of length bits.
Varshamov-Tenengolts (VT) codes can correct all possible single deletions
with an asymptotically optimal redundancy. Finding similar codes
for deletions is an open problem. We propose a new family of
codes, that we call Guess & Check (GC) codes, that can correct, with high
probability, a constant number of deletions occurring at uniformly
random positions within an arbitrary string. The GC codes are based on MDS
codes and have an asymptotically optimal redundancy that is . We provide deterministic polynomial time encoding and decoding schemes for
these codes. We also describe the applications of GC codes to file
synchronization.Comment: Accepted in ISIT 201
On Secure Distributed Data Storage Under Repair Dynamics
We address the problem of securing distributed storage systems against
passive eavesdroppers that can observe a limited number of storage nodes. An
important aspect of these systems is node failures over time, which demand a
repair mechanism aimed at maintaining a targeted high level of system
reliability. If an eavesdropper observes a node that is added to the system to
replace a failed node, it will have access to all the data downloaded during
repair, which can potentially compromise the entire information in the system.
We are interested in determining the secrecy capacity of distributed storage
systems under repair dynamics, i.e., the maximum amount of data that can be
securely stored and made available to a legitimate user without revealing any
information to any eavesdropper. We derive a general upper bound on the secrecy
capacity and show that this bound is tight for the bandwidth-limited regime
which is of importance in scenarios such as peer-to-peer distributed storage
systems. We also provide a simple explicit code construction that achieves the
capacity for this regime.Comment: 5 pages, 4 figures, to appear in Proceedings of IEEE ISIT 201
On Coding for Cooperative Data Exchange
We consider the problem of data exchange by a group of closely-located
wireless nodes. In this problem each node holds a set of packets and needs to
obtain all the packets held by other nodes. Each of the nodes can broadcast the
packets in its possession (or a combination thereof) via a noiseless broadcast
channel of capacity one packet per channel use. The goal is to minimize the
total number of transmissions needed to satisfy the demands of all the nodes,
assuming that they can cooperate with each other and are fully aware of the
packet sets available to other nodes. This problem arises in several practical
settings, such as peer-to-peer systems and wireless data broadcast. In this
paper, we establish upper and lower bounds on the optimal number of
transmissions and present an efficient algorithm with provable performance
guarantees. The effectiveness of our algorithms is established through
numerical simulations.Comment: Appeared in the proceedings of the 2010 IEEE Information Theory
Workshop (ITW 2010, Cairo
- …