5 research outputs found

    New Insights into the Genetics of Fetal Megacystis: ACTG2 Mutations, Encoding γ-2 Smooth Muscle Actin in Megacystis Microcolon Intestinal Hypoperistalsis Syndrome (Berdon Syndrome)

    No full text
    © 2015 S. Karger AG, Basel. Objective: To identify the molecular basis for prenatally suspected cases of megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) (MIM 249210) in 3 independent families with clinical and radiographic evidence of MMIHS. Methods: Whole-exome sequencing (WES) and Sanger sequencing of the ACTG2 gene. Results: We identified a novel heterozygous de novo missense variant in ACTG2 c.770G\u3eA (p.Arg257His) encoding γ-2 smooth muscle actin (ACTG2) in 2 siblings with MMIHS, suggesting gonadal mosaicism of one of the parents. Two additional de novo missense variants (p.Arg257Cys and p.Arg178His) in ACTG2 were identified in 2 additional MMHIS patients. All of our patients had evidence of fetal megacystis and a normal or slightly increased amniotic fluid volume. Additional findings included bilateral renal hydronephrosis, an enlarged fetal stomach, and transient dilated bowel loops. ACTG2 immunostaining of the intestinal tissue showed an altered muscularis propria, a markedly thinned longitudinal muscle layer, and a reduced amount and abnormal distribution of ACTG2. Conclusion: Our study demonstrates that de novo mutations in ACTG2 are a cause of fetal megacystis in MMIHS and that gonadal mosaicism may be present in a subset of cases. These findings have implications for the counseling of families with a diagnosis of fetal megacystis with a preserved amniotic fluid volume and associated gastrointestinal findings

    Differential effects of bariatric surgery and lifestyle interventions on plasma levels of Lp(a) and fatty acids

    No full text
    Abstract Background Limited evidence suggests that surgical and non-surgical obesity treatment differentially influence plasma Lipoprotein (a) [Lp(a)] levels. Further, a novel association between plasma arachidonic acid and Lp(a) has recently been shown, suggesting that fatty acids are a possible target to influence Lp(a). Here, the effects of bariatric surgery and lifestyle interventions on plasma levels of Lp(a) were compared, and it was examined whether the effects were mediated by changes in plasma fatty acid (FA) levels. Methods The study includes two independent trials of patients with overweight or obesity. Trial 1: Two-armed intervention study including 82 patients who underwent a 7-week low energy diet (LED), followed by Roux-en-Y gastric bypass and 52-week follow-up (surgery-group), and 77 patients who underwent a 59-week energy restricted diet- and exercise-program (lifestyle-group). Trial 2: A clinical study including 134 patients who underwent a 20-week very-LED/LED (lifestyle-cohort). Results In the surgery-group, Lp(a) levels [median (interquartile range)] tended to increase in the pre-surgical LED-phase [17(7–68)-21(7–81)nmol/L, P = 0.05], but decreased by 48% after surgery [21(7–81)—11(7–56)nmol/L, P < 0.001]. In the lifestyle-group and lifestyle-cohort, Lp(a) increased by 36%[14(7–77)—19(7–94)nmol/L, P < 0.001] and 14%[50(14–160)—57(19–208)nmol/L, P < 0.001], respectively. Changes in Lp(a) were independent of weight loss. Plasma levels of total saturated FAs remained unchanged after surgery, but decreased after lifestyle interventions. Arachidonic acid and total n-3 FAs decreased after surgery, but increased after lifestyle interventions. Plasma FAs did not mediate the effects on Lp(a). Conclusion Bariatric surgery reduced, whereas lifestyle interventions increased plasma Lp(a), independent of weight loss. The interventions differentially influenced changes in plasma FAs, but these changes did not mediate changes in Lp(a). Trial registration Trial 1: Clinicaltrials.gov NCT00626964. Trial 2: Netherlands Trial Register NL2140 (NTR2264). Graphical abstrac
    corecore