10 research outputs found

    Effect of an organoclay on the reaction-induced phase-separation in a dynamically asymmetric epoxy/PCL system

    Get PDF
    The addition of layered silicates can significantly affect the phase behaviour of both immiscible thermoplastic blends and partially miscible thermoset systems that undergo reaction-induced phase separation (RIPS) during curing. This study focuses on the phase behaviour of polycaprolactone (PCL)/epoxy in the presence of organically modified montmorillonite (oMMT). Due to the high dynamic asymmetry caused by the differences in the molecular weights and viscosities of the PCL and the uncured epoxy, the critical point is localised at low PCL concentrations, as indicated by the pseudophase diagram. The addition of oMMT to the system led to the marked shift of the critical point towards higher concentrations of PCL, with an increase in the oMMT content occurring as a consequence of the preferential localisation of the clay in the epoxy phase, making this phase more dynamically slow. Significant changes in morphology, including phase inversion of the PCL/epoxy systems caused by the presence of oMMT, were recorded for PCL concentrations ranging from 10 to 30%

    Epoxy/PCL nanocomposites: Effect of layered silicate on structure and behavior

    No full text
    The effect of clay-induced morphological transitions on the structure formed in the course of reactively induced phase separation (RIPS) and its impact on the properties of epoxy/polycaprolactone (PCL) nanocomposites were studied. The effect of organophilized montmorillonite on the behavior of epoxy containing 5–30% PCL was strongly dependent on the epoxy/PCL system composition. With a supercritical 20% PCL content, the increasing amounts of clay led to changes in the morphology that produced phase inversion, causing radical changes in the mechanical behavior. The main effect of the clay, which was located preferentially in the epoxy, was to influence the significant dynamic asymmetry (and thus the phase behavior). The simultaneous pinning effect of the clay on the phase separation changed the composition and parameters of the coexisting phases. The evaluation of the structure-properties relationship indicated the significant potential for nanoclays to control the behavior of thermoplastic- modified epoxy systems
    corecore