118 research outputs found
Suma
Se presenta una propuesta de trabajo en el aula a partir de la lectura de el libro El teorema, de Adam Fawer. Así se estudian conceptos como las probabilidades, la criptografía o los juegos de azar, mediante problemas a resolver en las clases.Universitat de Barcelona. Biblioteca de Ciències de l'Educació; Passeig de la Vall d'hebron, 171; 08035 Barcelona; +34934021035; +34934021034;ES
Genetic Markers Found for Response to Heat Stress in Chickens
A unique line of chickens was evaluated for response to heat stress. We measured body temperature, body weight, breast yield, and digestibility. Genomic (DNA) markers were identified by genotyping on the Affymetric 600K array. We conclude that the traits measured during heat stress do have a genetic component. Genomic markers for the response to heat stress have been identified and may be used for breeding more resilient animals
Breed Differences in Physiologic Response to Embryonic Thermal Conditioning and Post-hatch Heat Stress in Chickens
The long range global forecast is for greater numbers of chickens being reared in extreme heat conditions; thus, genetic stocks will need to be selected for performance in warmer production environments. Eggs from three genetic lines were either incubated by conventional “normal” or thermal conditioning (elevated) and the hatched chickens were reared in either normal temperature or heat-stressed environments. Biological and genetic data were collected to identify biomarkers that could be used for genetic selection. The differences observed among lines indicate that a portion of heat tolerance is related to genetics. This study also demonstrates that elevated embryonic incubation alters the chickens’ response to heat stress. Furthermore, blood parameters may be used as biomarkers for selection
RNA-Seq Analysis of Broiler Liver Transcriptome Reveals Novel Responses to High Ambient Temperature
In broilers, high ambient temperature can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat-related losses annually. The objective of this study is to characterize the effects of cyclic high ambient temperature on the transcriptome of a metabolically active organ, the liver. This study provides novel insight into the effects of high ambient temperature on metabolism in broilers, because it is the first reported RNA-seq study to characterize the effect of heat on the transcriptome of a metabolic-related tissue. This information provides a platform for future investigations to further elucidate physiologic responses to high ambient temperature and seek methods to ameliorate the negative impacts of heat. Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology resulted in 138 million, 100-base pair single end reads, yielding a total of 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value \u3c 0.05 and a fold-change ≥ 2 in response to a week of cyclic high ambient temperature with 27 down-regulated and 13 up-regulated genes. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes: “Cell Signaling” and “Endocrine System Development and Function”. The gene expression differences in the liver transcriptome of the heat-exposed broilers reflected physiological responses to decrease internal temperature, reduce hyperthermia-induced apoptosis, and promote tissue repair. Additionally, the differential gene expression revealed a physiological response to regulate the perturbed cellular calcium levels that can result from high ambient temperature exposure. Exposure to cyclic high ambient temperature results in changes at the metabolic, physiologic, and cellular level that can be characterized through RNA-seq analysis of the liver transcriptome of broilers. The findings highlight specific physiologic mechanisms by which broilers reduce the effects of exposure to high ambient temperature. This information provides a foundation for future investigations into the gene networks involved in the broiler stress response and for development of strategies to ameliorate the negative impacts of heat on animal production and welfare
Effects of acute and chronic heat stress on the performance, egg quality, body temperature, and blood gas parameters of laying hens
The goal of this experiment was to measure the physiological response of individual laying hens exposed to heat stress (HS). Performance, egg quality, body temperature (BT), and blood chemistry of laying hens were individually recorded before and after various intervals of daily cyclic HS. In total, 407 18-week-old W-36 parent-line laying hens (Hy-Line International, Dallas Center, IA) were housed individually in battery cages. After an acclimation period, baseline data were collected from 22 to 24-wk before the hens were subjected to a daily cyclic HS consisting of 7 h at 35°C returning to 30°C for the remaining 17 h/D from 24 to 28-wk of age. Eggs were collected and individually weighed daily. Feed intake (FI), egg production (EP), egg weights, egg mass, BW, and feed efficiency (FE) (g egg/kg FI) were calculated over 2-wk time periods. Eggs were collected for quality assessment the day before HS began, the 2nd day of HS, and on a weekly basis throughout the 4-wk HS. Blood was collected and BT measured the day before heat HS was initiated, on the first day of HS, and again at 2 and 4-wk of HS. Blood PCO2 and iCa decreased, and blood pH increased within 4 to 6 h of HS (P ≤ 0.01). Shell weights decreased with acute HS, possibly due to the reduction in blood iCa (P ≤ 0.01). After 4-wk of HS the blood pH returned to pre-HS levels but iCa remained decreased (P ≤ 0.01). Shell weights remained low and Haugh units decreased after 2 and 4-wk of HS (P ≤ 0.01). Feed efficiency was increased and FI, EP, and BW decreased by 2-wk of HS and remained low through 4-wk (P ≤ 0.01). The cyclic HS had a significant effect on the performance, egg quality, and blood chemistry over the 4-wk HS
Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress
Background: Losses in poultry production due to heat stress have considerable negative economic consequences. Previous studies in poultry have elucidated a genetic influence on response to heat. Using a unique chicken genetic resource, we identified genomic regions associated with body temperature (BT), body weight (BW), breast yield, and digestibility measured during heat stress. Identifying genes associated with a favorable response during high ambient temperature can facilitate genetic selection of heat-resilient chickens. Methods: Generations F18 and F19 of a broiler (heat-susceptible) × Fayoumi (heat-resistant) advanced intercross line (AIL) were used to fine-map quantitative trait loci (QTL). Six hundred and thirty-one birds were exposed to daily heat cycles from 22 to 28 days of age, and phenotypes were measured before heat treatment, on the 1st day and after 1 week of heat treatment. BT was measured at these three phases and BW at pre-heat treatment and after 1 week of heat treatment. Breast muscle yield was calculated as the percentage of BW at day 28. Ileal feed digestibility was assayed from digesta collected from the ileum at day 28. Four hundred and sixty-eight AIL were genotyped using the 600 K Affymetrix chicken SNP (single nucleotide polymorphism) array. Trait heritabilities were estimated using an animal model. A genome-wide association study (GWAS) for these traits and changes in BT and BW was conducted using Bayesian analyses. Candidate genes were identified within 200-kb regions around SNPs with significant association signals. Results: Heritabilities were low to moderate (0.03 to 0.35). We identified QTL for BT on Gallus gallus chromosome (GGA)14, 15, 26, and 27; BW on GGA1 to 8, 10, 14, and 21; dry matter digestibility on GGA19, 20 and 21; and QTL of very large effect for breast muscle yield on GGA1, 15, and 22 with a single 1-Mb window on GGA1 explaining more than 15 % of the genetic variation. Conclusions: This is the first study to estimate heritabilities and perform GWAS using this AIL for traits measured during heat stress. Significant QTL as well as low to moderate heritabilities were found for each trait, and these QTL may facilitate selection for improved animal performance in hot climatic conditions
Genomes of African Chickens Show Evolutionary Response to Environmental Stress
The effect of environmental stress on genomic evolution was studied using three populations of chickens, two ecotypes (Uganda and Rwanda) indigenous to Africa and one that was imported to Africa from India (Kuroiler). The chickens (N=196) were genotyped and then analyzed for the presence of genes and gene regions thought to be under selection by environmental stressors that has allowed them to survive in the presence of such circumstances. Through the use of various statistical and annotative approaches we were able to determine that all three populations show selection pressure for variants near genes related to oxidative stress, which can be brought upon by climate and poor food resources. Additionally selection for kinase activity, and calcium ion movement were also detected. Data also showed that all populations harbor fixed regions of the genome that overlap with known quantitative trait loci (QTL) related to commercial and behavioral traits. Overall, this study provides information on genes possibly connected to survival in stressful environments and has the potential to be used as a model for finding genomic regions of tolerance in commercial populations
Public access to ICTs : sculpting the profile of users; working paper
Based on a survey of public access ICT users in five countries, the preliminary analysis indicates that while many public access ICT users are young (40% under 20 years old), male (65%), students (44%), with at least secondary education (82%), there is a fair amount of diversity in user characteristics. The significance of public access ICTs is demonstrated in the finding that most users’ first contact with computers and the internet was in a public access venue. The Global Impact Study of Public Access to Information and Communication Technologies was a five-year project (2007-2012)
Genomic Comparison of Indigenous African and Northern European Chickens Reveals Putative Mechanisms of Stress Tolerance Related to Environmental Selection Pressure
Global climate change is increasing the magnitude of environmental stressors, such as temperature, pathogens, and drought, that limit the survivability and sustainability of livestock production. Poultry production and its expansion is dependent upon robust animals that are able to cope with stressors in multiple environments. Understanding the genetic strategies that indigenous, noncommercial breeds have evolved to survive in their environment could help to elucidate molecular mechanisms underlying biological traits of environmental adaptation. We examined poultry from diverse breeds and climates of Africa and Northern Europe for selection signatures that have allowed them to adapt to their indigenous environments. Selection signatures were studied using a combination of population genomic methods that employed FST, integrated haplotype score (iHS), and runs of homozygosity (ROH) procedures. All the analyses indicated differences in environment as a driver of selective pressure in both groups of populations. The analyses revealed unique differences in the genomic regions under selection pressure from the environment for each population. The African chickens showed stronger selection toward stress signaling and angiogenesis, while the Northern European chickens showed more selection pressure toward processes related to energy homeostasis. The results suggest that chromosomes 2 and 27 are the most diverged between populations and the most selected upon within the African (chromosome 27) and Northern European (chromosome 2) birds. Examination of the divergent populations has provided new insight into genes under possible selection related to tolerance of a population’s indigenous environment that may be baselines for examining the genomic contribution to tolerance adaptions
Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line
Heat stress triggers an evolutionarily conserved set of responses in cells. The transcriptome responds to hyperthermia by altering expression of genes to adapt the cell or organism to survive the heat challenge. RNA-seq technology allows rapid identification of environmentally responsive genes on a large scale. In this study, we have used RNA-seq to identify heat stress responsive genes in the chicken male white leghorn hepatocellular (LMH) cell line. The transcripts of 812 genes were responsive to heat stress (p \u3c 0.01) with 235 genes upregulated and 577 downregulated following 2.5 h of heat stress. Among the upregulated were genes whose products function as chaperones, along with genes affecting collagen synthesis and deposition, transcription factors, chromatin remodelers, and genes modulating the WNT and TGF-beta pathways. Predominant among the downregulated genes were ones that affect DNA replication and repair along with chromosomal segregation. Many of the genes identified in this study have not been previously implicated in the heat stress response. These data extend our understanding of the transcriptome response to heat stress with many of the identified biological processes and pathways likely to function in adapting cells and organisms to hyperthermic stress. Furthermore, this study should provide important insight to future efforts attempting to improve species abilities to withstand heat stress through genome-wide association studies and breeding
- …