487 research outputs found

    Science, technology, and the national posture note no. 1

    Get PDF
    Dependence of national science and technological progress on research and developmen

    The N.A.C.A. Apparatus for Studying the Formation and Combustion of Fuel Sprays and the Results from Preliminary Tests

    Get PDF
    Described here is an apparatus for studying the formation and combustion of fuel sprays under conditions closely simulating those in a high speed compression-ignition engine. The apparatus consists of a single-cylinder modified test engine, a fuel injection system so designed that a single charge of fuel can be injected into the combustion chamber, an electric driving motor, and a high-speed photographic apparatus. The cylinder head of the engine has a vertical disk form of combustion chamber whose sides are glass windows. When the fuel is injected into the combustion chamber, motion pictures at the rate of 2000 per second are taken of the spray formation by means of spark discharges. When combustion takes place, the light of combustion is recorded on the same photographic film as the spray photographs. Included here are the results of some tests to determine the effect of air temperature, air flow, and nozzle design on the spray formation. The results show that the compression temperature has little effect on the penetration of the fuel spray, but does not affect the dispersion, that air velocities of about 300 feet per second are necessary to destroy the core of the spray, and that the effect of air flow on the spray is controlled to a certain extent by the design of the injection nozzle. The results on the combustion of the spray show that when ignition does not take place until after spray cut-off, the ignition may start almost simultaneously throughout the combustion chamber or at different points throughout the chamber. When ignition takes place before spray cut-off, the combustion starts around the edge of the spray and then spreads throughout the chamber

    Preliminary Tests on the Vaporization of Fuel Sprays

    Get PDF
    High-speed motion pictures were taken of fuel sprays injected into the combustion chamber of the N.A.C.A. combustion apparatus. Three fuels, ethyl alcohol, gasoline, and fuel oil, which differed considerably in volatility were tested. By maintaining the engine temperature below that required for ignition the spray could be studied from soon after the start of injection until 130 crank degrees later. The results show that the sprays vaporize appreciably so that it is possible for the ignition in high speed compression-ignition engines to take place from the vapor phase

    Effect of High Air Velocities on the Distribution and Penetration of a Fuel Spray

    Get PDF
    By means of the NACA Spray Photography Equipment high speed moving pictures were taken of the formation and development of fuel sprays from an automatic injection valve. The sprays were injected normal to and counter to air at velocities from 0 to 800 feet per second. The air was at atmosphere temperature and pressure. The results show that high air velocities are an effective means of mixing the fuel spray with the air during injection

    The Effect of Injection-Valve Opening Pressure on Spray-Tip Penetration

    Get PDF
    The effect of various injection-valve opening pressures on the spray-tip penetration was determined for several injection pressure. A common-rail fuel injection system was used. For a given injection pressure a maximum rate of penetration was obtained with an injection-valve opening pressure equal to the injection pressure. As the excess of the injection pressure over the injection-valve opening pressure was increased for a given injection pressure, the effect of the injection-valve opening pressure on the spray-tip penetration was increased

    Some Characteristics of Fuel Sprays from Open Nozzles

    Get PDF
    The penetration and cone-angle of fuel sprays from open nozzles were recorded with the NACA Spray Photography Equipment. The results show that for injection systems in which the rate of pressure rise at the discharge orifice is high, open nozzles give spray-tip velocities and penetrations which compare favorably with those of closed nozzles. The spray cone-angle was the same for all tests, although open nozzles having different orifice diameters were used, and one nozzle was used both as an open and as a closed nozzle. In designing a fuel system using open nozzles, particular care must be taken to avoid air pockets. The check valve should be placed close to the discharge orifice

    Effect of Engine Operating Conditions on the Vaporization of Safety Fuels

    Get PDF
    Tests were conducted with the N.A.C.A. combustion apparatus to determine the effect of compression ratio and engine temperature on the vaporization of a hydrogenated "safety fuel" during the compression stroke under conditions similar to those in a spark-ignition engine. The effects of fuel boiling temperature on vaporization using gasoline, safety fuel, and Diesel fuel oil was also investigated. The results show that increasing the compression ratio has little effect on the rate of fuel vaporization, but that increasing the air temperature by increasing the engine temperature increases the rate of fuel vaporization. The results also show that the vaporized fuel forms a homogeneous mixture with the air more rapidly that does the atomized fuel spray

    Effect of the Reservoir Volume on the Discharge Pressures in the Injection System of the N.A.C.A. Spray Photography Equipment

    Get PDF
    Tests were made to determine the effect of the reservoir volume on the discharge pressures in the injection system of the N.A.C.A. spray photography equipment. The data obtained are applicable to the design of a common rail fuel-injection system. The data show that an injection system of the type described can be designed so that not more than full load fuel quantity can be injected into the engine cylinders, and so that the fuel spray characteristics remain constant over a large range of engine speeds. Formulas are presented for computing the volume of the reservoir and the diameter of the discharge orifice

    Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    Get PDF
    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber
    corecore