12 research outputs found
Quenching of the Deuteron in Flight
We investigate the Lorentz contraction of a deuteron in flight. Our starting
point is the Blankenbecler-Sugar projection of the Bethe-Salpeter equation to a
3-dimensional quasi potential equation, wqhich we apply for the deuteron bound
in an harmonic oscillator potential (for an analytical result) and by the Bonn
NN potential for a more realistic estimate. We find substantial quenching with
increasing external momenta and a significant modification of the high momentum
spectrum of the deuteron.Comment: 11 pages, 4 figure
Correction due to finite speed of light in absolute gravimeters
Correction due to finite speed of light is among the most inconsistent ones
in absolute gravimetry. Formulas reported by different authors yield
corrections scattered up to 8 Gal with no obvious reasons. The problem,
though noted before, has never been studied, and nowadays the correction is
rather postulated than rigorously proven. In this paper we make an attempt to
revise the subject. Like other authors, we use physical models based on signal
delays and the Doppler effect, however, in implementing the models we
additionally introduce two scales of time associated with moving and resting
reflectors, derive a set of rules to switch between the scales, and establish
the equivalence of trajectory distortions as obtained from either time delay or
distance progression. The obtained results enabled us to produce accurate
correction formulas for different types of instruments, and to explain the
differences in the results obtained by other authors. We found that the
correction derived from the Doppler effect is accountable only for of
the total correction due to finite speed of light, if no signal delays are
considered. Another major source of inconsistency was found in the tacit use of
simplified trajectory models
Improvements of the MPG-2 transportable absolute ballistic gravimeter
The MPG-2 (Max-Planck-Gravimeter) is a transportable absolute gravimeter built on a classical free-fall scheme to measure the local gravity value. With significant improvements and further investigations in recent years, the standard deviation of the mean for a typical measurement over 12 h to 24 h is 1.0 mu Gal to 3.0 mu Gal (1 mu Gal = 10(-8) ms(-2)), and the combined standard uncertainty is estimated to be less than 10 mu Gal. The major improvements include the new interferometer design and alignment, longer drop length, reduced recoil effects and demagnetization of the falling body. The revised uncertainty budget and new measurement results of MPG-2 are reported. The results of observations at the reference gravity station Bad Homburg confirmed the revised uncertainty budget