36 research outputs found

    Comparison of T-Cell Interferon-γ Release Assays for Mycobacterium tuberculosis-Specific Antigens in Patients with Active and Latent Tuberculosis

    Get PDF
    Through the use of QuantiFERON-TB Gold, a commercial IFN-γ assay, we compared differences in quantitative T-cell responses to Mycobacterium tuberculosis (MTB)-specific antigens [QuantiFERON TB-2G (QFT-2G)] between patients with active tuberculosis (TB) disease and those with latent TB infection (LTBI). The patient group consisted of 180 patients with active TB disease (culture-positive for MTB) and 50 screening contacts with LTBI-positive response to the QFT-2G test. We prospectively performed a tuberculin skin test (TST) and a QFT-2G test for all subjects. The median IFN-γ levels upon the application of both antigens, ESAT-6 and CFP-10, were significantly higher in patients with active TB disease than in those with LTBI. A combined positive response to both antigens occurred at a higher rate in patients with active TB disease than in those with LTBI. There were no significant relationships between the quantitative responses of IFN-γ to both antigens and the maximum induration on TST in both patient groups. We demonstrated significant differences in the quantitative responses of IFN-γ to MTB between patients with active TB disease and those with LTBI in this study. However, there was an overlap in the IFN-γ levels between active TB disease and LTBI groups. Therefore, it would be difficult to use the QFT-2G test to completely discriminate active TB disease from LTBI

    Effect of concrete slats, three mat types and out-wintering pads on performance and welfare of finishing beef steers

    Get PDF
    peer-reviewedBackground The objective was to investigate the effect of placing mats on concrete slatted floors on performance, behaviour, hoof condition, dirt scores, physiological and immunological variables of beef steers, and to compare responses with animals on out-wintering pads. Continental crossbred beef steers [n = 360; mean (±SD) initial live weight 539 kg (42.2)] were blocked by breed and live weight and randomly assigned to one of five treatments; (1) Concrete slats alone, (2) Mat 1 (Natural Rubber structure) (Durapak Rubber Products), (3) Mat 2 (Natural rubber structure) (EasyFix), (4) Mat 3 (modified ethylene vinyl acetate (EVA) foam structure) and (5) Out-wintering pads (OWP’s). Results Animals on the OWPs had a greater (P  0.05) as the other treatments. Animals on the OWPs had reduced lying percentage time compared with all the other treatments. Dry matter (DM) intake was greater for animals on the OWPs compared with all the other treatments. Carcass weight, kill out proportion, carcass fat score, carcass composition score, FCR and physiological responses were similar (P > 0.05) among treatments. No incidence of laminitis was observed among treatments. The number of hoof lesions was greater on all mat types (P < 0.05) compared with concrete slats and OWP treatments. Dirt scores were greater (P < 0.05) for animals on OWPs when measured on days 42, 84, 105, 126 and 150 compared with animals on slats. Conclusions Under the conditions adopted for the present study, there was no evidence to suggest that animals housed on bare concrete slats were disadvantaged in respect of animal welfare compared with animals housed on other floor types. It is concluded that the welfare of steers was not adversely affected by slats compared with different mat types or OWPs

    Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals suppression of host immune genes

    Get PDF
    Background Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. In the present study, we have analysed the transcriptome of peripheral blood leukocytes (PBL) from eight M. bovis-infected and eight control non-infected age-matched and sex-matched Holstein-Friesian cattle using the Affymetrix® GeneChip® Bovine Genome Array with 24,072 gene probe sets representing more than 23,000 gene transcripts. Results Control and infected animals had similar mean white blood cell counts. However, the mean number of lymphocytes was significantly increased in the infected group relative to the control group (P = 0.001), while the mean number of monocytes was significantly decreased in the BTB group (P = 0.002). Hierarchical clustering analysis using gene expression data from all 5,388 detectable mRNA transcripts unambiguously partitioned the animals according to their disease status. In total, 2,960 gene transcripts were differentially expressed (DE) between the infected and control animal groups (adjusted P-value threshold ≤ 0.05); with the number of gene transcripts showing decreased relative expression (1,563) exceeding those displaying increased relative expression (1,397). Systems analysis using the Ingenuity® Systems Pathway Analysis (IPA) Knowledge Base revealed an over-representation of DE genes involved in the immune response functional category. More specifically, 64.5% of genes in the affects immune response subcategory displayed decreased relative expression levels in the infected animals compared to the control group. Conclusions This study demonstrates that genome-wide transcriptional profiling of PBL can distinguish active M. bovis-infected animals from control non-infected animals. Furthermore, the results obtained support previous investigations demonstrating that mycobacterial infection is associated with host transcriptional suppression. These data support the use of transcriptomic technologies to enable the identification of robust, reliable transcriptional markers of active M. bovis infection.This work was supported by Investigator Grants from Science Foundation Ireland (Nos: SFI/01/F.1/B028 and SFI/08/IN.1/B2038), a Research Stimulus Grant from the Department of Agriculture, Fisheries and Food (No: RSF 06 405) and a European Union Framework 7 Project Grant (No: KBBE-211602-MACROSYS). KEK is supported by the Irish Research Council for Science, Engineering and Technology (IRCSET) funded Bioinformatics and Systems Biology PhD Programme http://bioinfo-casl.ucd.ie/PhD

    Cytotoxic T cell polyepitope vaccines delivered by ISCOMs

    No full text
    CD8 alpha beta cytotoxic T lymphocyte (CTL) polyepitope or polytope vaccines have traditionally been delivered using recombinant vector or DNA based delivery modalities. Here we show the delivery of polytope vaccines in the form of either synthetic polypeptides or recombinant polytope proteins by ImmunoStimulatory COMplexes (ISCOMs (R)). Induction of multiple protective CTL responses by these polytope-ISCOM formulations were comparable to viral vector or DNA based delivery modalities as assessed by IFN gamma ELISpot, chromium release and viral challenge assays. Measurement of CTL responses specific for the different epitopes revealed imunodominance patterns, which were largely independent of the vaccine vector or the order of the epitopes in the polytope. ISCOMs thus emerge as a viable human delivery modality for protein-based polytope vaccines. (C) 2001 Elsevier Science Ltd. All rights reserved

    Tuberculin-Purified Protein Derivative-, MPT-64-, and ESAT-6-Stimulated Gamma Interferon Responses in Medical Students before and after Mycobacterium bovis BCG Vaccination and in Patients with Tuberculosis

    No full text
    QuantiFERON-TB (QIFN) (CSL Limited) is a whole-blood assay for the recognition of infection with Mycobacterium tuberculosis. QIFN measures gamma interferon (IFN-γ) production when purified protein derivatives (PPDs) of mycobacteria are incubated with venous blood samples. The specificity of QIFN in medical students before and after BCG immunization was assessed, and sensitivity in patients with tuberculosis was assessed. Antigens were PPD derived from M. tuberculosis and two M. tuberculosis-specific proteins, ESAT-6 and MPT-64. Of 60 medical students, all of whom had 0-mm tuberculin skin tests (TSTs) at study entry, 58 (97%) were initially classified as negative for M. tuberculosis infection by PPD QIFN. Five months after BCG immunization, 7 of 54 students (13%) had a TST result of ≥10 mm and 11 of 54 students (20%) tested positive by PPD QIFN. ESAT-6- and MPT-64-stimulated IFN-γ responses in the medical students were negative prior to and after BCG immunization. For patients with active tuberculosis, 12 of 19 (63%) were positive by PPD QIFN, 11 of 19 (58%) were positive by ESAT-6 QIFN, and 0 of 12 were positive by MPT-64 QIFN. In conclusion, PPD QIFN was negative in 97% of a low-risk population who had not received BCG and who had negative TSTs. The specificities of both the TST and PPD QIFN were reduced following BCG immunization. PPD QIFN and ESAT-6 QIFN were of similar and moderate sensitivity in patients with active tuberculosis, but ESAT-6 QIFN is likely to be more specific because it is not influenced by past BCG exposure

    Identification of vaccine candidate antigens from a genomic analysis of Porphyomonas gingivalis

    No full text
    Porphyromonas gingivalis is a key periodontal pathogen which has been implicated in the etiology of chronic adult periodontitis. Our aim was to develop a protein based vaccine for the prevention and or treatment of this disease. We used a whole genome sequencing approach to identify potential vaccine candidates. From a genomic sequence, we selected 120 genes using a series of bioinformatics methods. The selected genes were cloned for expression in Escherichia coli and screened with P. gingivalis antisera before purification and testing in an animal model. Two of these recombinant proteins (PG32 and PG33) demonstrated significant protection in the animal model, while a number were reactive with various antisera. This process allows the rapid identification of vaccine candidates from genomic data. (C) 2001 Elsevier Science Ltd. All rights reserved
    corecore