30,430 research outputs found
Dynamic structure factor of ultracold Bose and Fermi gases in optical lattices
We investigate the dynamic structure factor of atomic Bose and Fermi gases in
one-dimensional optical lattices at zero temperature. The focus is on the
generic behaviour of S(k,omega) as function of filling and interaction strength
with the aim of identifying possible experimental signatures for the different
quantum phase transitions. We employ the Hubbard or Bose-Hubbard model and
solve the eigenvalue problem of the Hamiltonian exactly for moderate lattice
sizes. This allows us to determine the dynamic structure factor and other
observables directly in the phase transition regime, where approximation
schemes are generally not applicable. We discuss the characteristic signatures
of the various quantum phases appearing in the dynamic structure factor and
illustrate that the centroid of the strength distribution can be used to
estimate the relevant excitation gaps. Employing sum rules, these quantities
can be evaluated using ground state expectation values only. Important
differences between bosonic and fermionic systems are observed, e.g., regarding
the origin of the excitation gap in the Mott-insulator phase.Comment: 15 pages, 7 figure
Robust massive MIMO Equilization for mmWave systems with low resolution ADCs
Leveraging the available millimeter wave spectrum will be important for 5G.
In this work, we investigate the performance of digital beamforming with low
resolution ADCs based on link level simulations including channel estimation,
MIMO equalization and channel decoding. We consider the recently agreed 3GPP NR
type 1 OFDM reference signals. The comparison shows sequential DCD outperforms
MMSE-based MIMO equalization both in terms of detection performance and
complexity. We also show that the DCD based algorithm is more robust to channel
estimation errors. In contrast to the common believe we also show that the
complexity of MMSE equalization for a massive MIMO system is not dominated by
the matrix inversion but by the computation of the Gram matrix.Comment: submitted to WCNC 2018 Workshop
Density functional theory for hard-sphere mixtures: the White-Bear version Mark II
In the spirit of the White-Bear version of fundamental measure theory we
derive a new density functional for hard-sphere mixtures which is based on a
recent mixture extension of the Carnahan-Starling equation of state. In
addition to the capability to predict inhomogeneous density distributions very
accurately, like the original White-Bear version, the new functional improves
upon consistency with an exact scaled-particle theory relation in the case of
the pure fluid. We examine consistency in detail within the context of
morphological thermodynamics. Interestingly, for the pure fluid the degree of
consistency of the new version is not only higher than for the original
White-Bear version but also higher than for Rosenfeld's original fundamental
measure theory.Comment: 16 pages, 3 figures; minor changes; J. Phys.: Condens. Matter,
accepte
Paired and altruistic kidney donation in the UK: algorithms and experimentation
We study the computational problem of identifying optimal
sets of kidney exchanges in the UK. We show how to expand an integer
programming-based formulation [1, 19] in order to model the criteria that
constitute the UK definition of optimality. The software arising from this
work has been used by the National Health Service Blood and Transplant
to find optimal sets of kidney exchanges for their National Living Donor
Kidney Sharing Schemes since July 2008.We report on the characteristics
of the solutions that have been obtained in matching runs of the scheme
since this time. We then present empirical results arising from the real
datasets that stem from these matching runs, with the aim of establishing
the extent to which the particular optimality criteria that are present
in the UK influence the structure of the solutions that are ultimately
computed. A key observation is that allowing 4-way exchanges would be
likely to lead to a significant number of additional transplants
Response of Bose gases in time-dependent optical superlattices
The dynamic response of ultracold Bose gases in one-dimensional optical
lattices and superlattices is investigated based on exact numerical time
evolutions in the framework of the Bose-Hubbard model. The system is excited by
a temporal amplitude modulation of the lattice potential, as it was done in
recent experiments. For regular lattice potentials, the dynamic signatures of
the superfluid to Mott-insulator transition are studied and the position and
the fine-structure of the resonances is explained by a linear response
analysis. Using direct simulations and the perturbative analysis it is shown
that in the presence of a two-colour superlattice the excitation spectrum
changes significantly when going from the homogeneous Mott-insulator the quasi
Bose-glass phase. A characteristic and experimentally accessible signature for
the quasi Bose-glass is the appearance of low-lying resonances and a
suppression of the dominant resonance of the Mott-insulator phase.Comment: 20 pages, 9 figures; added references and corrected typo
- …