36 research outputs found

    Influenza Virus Infection of the Murine Uterus: A New Model for Antiviral Immunity in the Female Reproductive Tract

    Full text link
    Secretory IgA (S-IgA) mediates local immunity to influenza virus in the murine upper respiratory tract and may play an important role in local immunity to various microorganisms in the female reproductive tract as well. Although the presence of IgA in cervicovaginal or uterine secretions has been correlated with immunity to a number of pathogens, there has been no direct demonstration of the mediation of uterine antiviral immunity by S-IgA. Influenza virus, although not a normal pathogen of the reproductive tract, was used to develop a model for the investigation of mucosal immunity in the uterus. PR8 (H1N1) influenza virus injected into the ovarian bursa of BALB/c mice grew well, with peak titers between days 3 and 5. Intravenous injection of polymeric IgA anti-influenza virus monoclonal antibody before or 30 min after viral challenge protected mice against viral infection. We believe this work to be the first direct demonstration of S-IgA-mediated antiviral uterine immunity. It provides a model for further investigation of immunity in the female reproductive tract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63226/1/vim.2006.19.613.pd

    Study of the in vivo Priming Effect of Interferon in Mice

    No full text

    Stimulation of interferon and cytokine gene expression by imiquimod and stimulation by Sendai virus utilize similar signal transduction pathways.

    Get PDF
    The imidazoquinolineamine derivative 1-(2-methyl propyl)-1H-imidazole [4,5-c]quinoline-4-amine (imiquimod) has been shown to induce alpha interferon (IFN-alpha) synthesis both in vivo and in peripheral blood mononuclear cells in vitro. In this study, we show that, in these cells, imiquimod induces expression of several IFNA genes (IFNA1, IFNA2, IFNA5, IFNA6, and IFNA8) as well as the IFNB gene. Imiquimod also induced the expression of interleukin (IL)-6, IL-8, and tumor necrosis factor alpha genes. Expression of all these genes was transient, independent of cellular protein synthesis, and inhibited in the presence of tyrosine kinase and protein kinase C inhibitors. Infection with Sendai virus led to expression of a similar set of cytokine genes and several of the IFNA genes. Imiquimod stimulates binding of several induction-specific nuclear complexes: (i) the NF-kappa B-specific complexes binding to the kappa B enhancer present in the promoters of all cytokine genes, but not in IFNA genes, and (ii) the complex(es) binding to the A4F1 site, 5'-GTAAAGAAAGT-3', conserved in the inducible element of IFNA genes. These results indicate that imiquimod, similar to viral infection, stimulates expression of a large number of cytokine genes, including IFN-alpha/beta, and that the signal transduction pathway induced by both of these stimuli requires tyrosine kinase and protein kinase activity
    corecore