17 research outputs found

    High-resolution spatial mapping of a superconducting NbN wire using single-electron detection

    Full text link
    Superconducting NbN wires have recently received attention as detectors for visible and infrared photons. We present experiments in which we use a NbN wire for high-efficiency (40 %) detection of single electrons with keV energy. We use the beam of a scanning electron microscope as a focussed, stable, and calibrated electron source. Scanning the beam over the surface of the wire provides a map of the detection efficiency. This map shows features as small as 150 nm, revealing wire inhomogeneities. The intrinsic resolution of this mapping method, superior to optical methods, provides the basis of a characterization tool relevant for photon detectors.Comment: 2009 IEEE Toronto International Conference, Science and Technology for Humanity (TIC-STH

    High-field 1/f noise in hBN-encapsulated graphene transistors

    Full text link
    Low-frequency 1/f noise in electronics is a conductance fluctuation, that has been expressed in terms of a mobility "α\alpha-noise" by Hooge and Kleinpenning. Understanding this noise in graphene is a key towards high-performance electronics. Early investigations in diffusive graphene have pointed out a deviation from the standard Hooge formula, with a modified expression where the free-carrier density is substituted by a constant density nΔ∌1012  cm−2n_\Delta\sim10^{12}\;\mathrm{cm^{-2}}. We investigate hBN-encapsulated graphene transistors where high mobility gives rise to the non-linear velocity-saturation regime. In this regime, the α\alpha-noise is accounted for by substituting conductance by differential conductance GG, ressulting in a bell-shape dependence of flicker noise with bias voltage VV. The same analysis holds at larger bias in the Zener regime, with two main differences: the first one is a strong enhancement of the Hooge parameter reflecting the hundred-times larger coupling of interband excitations to the hyperbolic phonon-polariton (HPhP) modes of the mid-infrared Reststrahlen (RS) bands of hBN. The second is an exponential suppression of this coupling at large fields, which we attribute to decoherence effects. We also show that the HPhP bands control the amplitude of flicker noise according to the graphene-hBN thermal coupling estimated with microwave noise thermometry. The phenomenology of α\alpha-noise in graphene supports a quantum-coherent bremsstrahlung interpretation of flicker noise.Comment: v2, main + SI, added reference to open data on Zenodo repositor

    Magneto-exciton limit of quantum Hall breakdown in graphene

    Full text link
    One of the intrinsic drift velocity limit of the quantum Hall effect is the collective magneto-exciton (ME) instability. It has been demonstrated in bilayer graphene (BLG) using noise measurements. We reproduce this experiment in monolayer graphene (MLG), and show that the same mechanism carries a direct relativistic signature on the breakdown velocity. Based on theoretical calculations of MLG- and BLG-ME spectra, we show that Doppler-induced instabilities manifest for a ME phase velocity determined by a universal value of the ME conductivity, set by the Hall conductance.Comment: 27 pages, 11 figures including supplementary information (14 pages and 3 figures for the main text alone

    A corner reflector of graphene Dirac fermions as a phonon-scattering sensor

    Full text link
    Dirac fermion optics exploits the refraction of chiral fermions across optics-inspired Klein-tunneling barriers defined by high-transparency p-n junctions. We consider the corner reflector (CR) geometry introduced in optics or radars. We fabricate Dirac fermion CRs using bottom-gate-defined barriers in hBN-encapsulated graphene. By suppressing transmission upon multiple internal reflections, CRs are sensitive to minute phonon scattering rates. We report on doping-independent CR transmission in quantitative agreement with a simple scattering model including thermal phonon scattering. As a new signature of CRs, we observe Fabry-P\'erot oscillations at low temperature, consistent with single-path reflections. Finally, we demonstrate high-frequency operation which promotes CRs as fast phonon detectors. Our work establishes the relevance of Dirac fermion optics in graphene and opens a route for its implementation in topological Dirac matter.Comment: 11 pages, 4 figure

    Mesoscopic Klein-Schwinger effect in graphene

    Full text link
    Strong electric field annihilation by particle-antiparticle pair creation, described in detail by Sauter and Schwinger, is a basic non-perturbative prediction of quantum electrodynamics. Its experimental demonstration remains elusive as Schwinger fields ESE_S are beyond reach even for the light electron-positron pairs. Here we put forward a mesoscopic variant of the Schwinger effect in graphene, which hosts Dirac fermions with electron-hole symmetry. Using DC transport and RF noise, we report on universal 1d-Schwinger conductance at the pinch-off of ballistic graphene transistors. Strong pinch-off electric fields are concentrated in a length Λ≳0.1  Όm\Lambda\gtrsim 0.1\;\mathrm{\mu m} at the transistor drain, and induce Schwinger e-h pair creation at saturation, for a Schwinger voltage VS=ESΛV_S=E_S\Lambda on the order of the pinch-off voltage. This Klein-Schwinger effect (KSE) precedes an instability toward an ohmic Zener regime, which is rejected at twice the pinch-off voltage in long devices. The KSE not only gives clues to current saturation limits in ballistic graphene, but also opens new routes for quantum electrodynamic experiments in the laboratory.Comment: 32 pages, 11 figures, updated to include the link to the set of experimental data on the Zenodo deposit at DOI 10.5281/zenodo.710463

    High-sensitivity AC-charge detection with a MHz-frequency fluxonium qubit

    Full text link
    Owing to their strong dipole moment and long coherence times, superconducting qubits have demonstrated remarkable success in hybrid quantum circuits. However, most qubit architectures are limited to the GHz frequency range, severely constraining the class of systems they can interact with. The fluxonium qubit, on the other hand, can be biased to very low frequency while being manipulated and read out with standard microwave techniques. Here, we design and operate a heavy fluxonium with an unprecedentedly low transition frequency of 1.8 MHz1.8~\mathrm{MHz}. We demonstrate resolved sideband cooling of the ``hot'' qubit transition with a final ground state population of 97.7 %97.7~\%, corresponding to an effective temperature of 23 ΌK23~\mu\mathrm{K}. We further demonstrate coherent manipulation with coherence times T1=34 ΌsT_1=34~\mu\mathrm{s}, T2∗=39 ΌsT_2^*=39~\mu\mathrm{s}, and single-shot readout of the qubit state. Importantly, by directly addressing the qubit transition with a capacitively coupled waveguide, we showcase its high sensitivity to a radio-frequency field. Through cyclic qubit preparation and interrogation, we transform this low-frequency fluxonium qubit into a frequency-resolved charge sensor. This method results in a charge sensitivity of 33 Όe/Hz33~\mu\mathrm{e}/\sqrt{\mathrm{Hz}}, or an energy sensitivity (in joules per hertz) of 2.8 ℏ2.8~\hbar. This method rivals state-of-the-art transport-based devices, while maintaining inherent insensitivity to DC charge noise. The high charge sensitivity combined with large capacitive shunt unlocks new avenues for exploring quantum phenomena in the 1−10 MHz1-10~\mathrm{MHz} range, such as the strong-coupling regime with a resonant macroscopic mechanical resonator

    One hundred second bit-flip time in a two-photon dissipative oscillator

    Full text link
    Current implementations of quantum bits (qubits) continue to undergo too many errors to be scaled into useful quantum machines. An emerging strategy is to encode quantum information in the two meta-stable pointer states of an oscillator exchanging pairs of photons with its environment, a mechanism shown to provide stability without inducing decoherence. Adding photons in these states increases their separation, and macroscopic bit-flip times are expected even for a handful of photons, a range suitable to implement a qubit. However, previous experimental realizations have saturated in the millisecond range. In this work, we aim for the maximum bit-flip time we could achieve in a two-photon dissipative oscillator. To this end, we design a Josephson circuit in a regime that circumvents all suspected dynamical instabilities, and employ a minimally invasive fluorescence detection tool, at the cost of a two-photon exchange rate dominated by single-photon loss. We attain bit-flip times of the order of 100 seconds for states pinned by two-photon dissipation and containing about 40 photons. This experiment lays a solid foundation from which the two-photon exchange rate can be gradually increased, thus gaining access to the preparation and measurement of quantum superposition states, and pursuing the route towards a logical qubit with built-in bit-flip protection

    Direct observation and control of near-field radiative energy transfer in a natural hyperbolic material

    Full text link
    Heat control is a key issue in nano-electronics, where new efficient energy transfer mechanisms are highly sought after. In this respect, there is indirect evidence that high-mobility hexagonal boron nitride (hBN)-encapsulated graphene exhibits hyperbolic out-of-plane radiative energy transfer when driven out-of-equilibrium. Here we directly observe radiative energy transfer due to the hyperbolic phonon polaritons modes of the hBN encapsulant in intrinsic graphene devices under large bias, using mid-infrared spectroscopy and pyrometry. By using different hBN crystals of varied crystalline quality, we engineer the energy transfer efficiency, a key asset for compact thermal management of electronic circuits.Comment: 21 pages including Supplementary Material (Main text: 10 pages, 4 figures

    Effective photoconductivity of exfoliated black phosphorus for optoelectronic switching under 1.55 ÎŒm optical excitation Effective photoconductivity of exfoliated black phosphorus for optoelectronic switching under 1.55 lm optical excitation

    Full text link
    International audienceWe present a microwave photoconductive switch based on exfoliated black phosphorus and strongly responding to a 1.55 lm optical excitation. According to its number of atomic layers, exfoliated black phosphorus presents unique properties for optoelectronic applications, like a tunable direct bandgap from 0.3 eV to 2 eV, strong mobilities, and strong conductivities. The switch shows a maximum ON/OFF ratio of 17 dB at 1 GHz, and 2.2 dB at 20 GHz under 1.55-lm laser excitation at 50 mW, never achieved with bidimensional materials

    Mapping of the Quantum Efficiency of a Superconducting Single Electron Detector

    Full text link
    International audienceSuperconducting NbN wires have recently received attention as detectors for visible and infrared photons [1]. We present experiments in which we use a NbN wire for high-efficiency (similar or equal to 40%) detection of single electrons with keV energy. We use the beam of a scanning electron microscope as a focussed, stable, and calibrated electron source. Scanning the beam over the surface of the wire provides a map of the detection efficiency. This map shows features as small as 150 nm, revealing wire inhomogeneities. The intrinsic resolution of this mapping method, superior to optical methods, provides the basis of a characterization tool relevant for photon detectors
    corecore