3,273 research outputs found
Friction as Contrast Mechanism in Heterodyne Force Microscopy
The nondestructive imaging of subsurface structures on the nanometer scale
has been a long-standing desire in both science and industry. A few impressive
images were published so far that demonstrate the general feasibility by
combining ultrasound with an Atomic Force Microscope. From different excitation
schemes, Heterodyne Force Microscopy seems to be the most promising candidate
delivering the highest contrast and resolution. However, the physical contrast
mechanism is unknown, thereby preventing any quantitative analysis of samples.
Here we show that friction at material boundaries within the sample is
responsible for the contrast formation. This result is obtained by performing a
full quantitative analysis, in which we compare our experimentally observed
contrasts with simulations and calculations. Surprisingly, we can rule out all
other generally believed responsible mechanisms, like Rayleigh scattering,
sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound
attenuation. Our analytical description paves the way for quantitative
SubSurface-AFM imaging.Comment: 7 pages main paper + 11 pages supplementary material
FOULING MITIGATION WITH SYNTHETIC FIBRES IN A CASO4 SUPERSATURATED SOLUTION
Wood pulp fibre suspensions and model synthetic fibre suspensions have been shown previously to mitigate effectively calcium sulphate fouling in heat exchangers. Fibre flexibility was found to be a decisive fibre property in fouling mitigation. Adding fibres to a fouling fluid is environmentally benign and can be applied during operation without shutting down the heat exchanger. Because polymer fibres are more robust in a hostile environment, further work was initiated with two types of rayon fibre and one acrylic fibre of the same fibre length. Experiments were performed at both constant and varying fibre volume concentrations. The more flexible rayon fibres in suspension produced lower ultimate-fouling resistance values than the stiffer acrylic fibres. Fibres were embedded in the fouling layer and it is believed that this mechanism contributed to the overall fouling resistance and was a counterpart to the positive effects of fibres mitigating fouling. The more flexible fibres momentarily form viscoelastic bundles that can ‘absorb’ hydrodynamic shear forces, modify the turbulent stresses, and lower the fouling matter removal rate. Stiff fibres embedded in the deposit protrude into the bulk flow and entrap more fibres as they are less likely to deflect, bend, and be flattened by the shear stresses near the wall
Inelastic semiclassical Coulomb scattering
We present a semiclassical S-matrix study of inelastic collinear
electron-hydrogen scattering. A simple way to extract all necessary information
from the deflection function alone without having to compute the stability
matrix is described. This includes the determination of the relevant Maslov
indices. Results of singlet and triplet cross sections for excitation and
ionization are reported. The different levels of approximation -- classical,
semiclassical, and uniform semiclassical -- are compared among each other and
to the full quantum result.Comment: 9 figure
Semiclassical initial value calculations of collinear helium atom
Semiclassical calculations using the Herman-Kluk initial value treatment are
performed to determine energy eigenvalues of bound and resonance states of the
collinear helium atom. Both the configuration (where the classical motion
is fully chaotic) and the configuration (where the classical dynamics is
nearly integrable) are treated. The classical motion is regularized to remove
singularities that occur when the electrons collide with the nucleus. Very good
agreement is obtained with quantum energies for bound and resonance states
calculated by the complex rotation method.Comment: 24 pages, 3 figures. Submitted to J. Phys.
Separation and identification of dominant mechanisms in double photoionization
Double photoionization by a single photon is often discussed in terms of two
contributing mechanisms, {\it knock-out} (two-step-one) and {\it shake-off}
with the latter being a pure quantum effect. It is shown that a quasi-classical
description of knock-out and a simple quantum calculation of shake-off provides
a clear separation of the mechanisms and facilitates their calculation
considerably. The relevance of each mechanism at different photon energies is
quantified for helium. Photoionization ratios, integral and singly differential
cross sections obtained by us are in excellent agreement with benchmark
experimental data and recent theoretical results.Comment: 4 pages, 5 figure
Pairwise approximation for SIR-type network epidemics with non-Markovian recovery
We present the generalized mean-field and pairwise models for non-Markovian epidemics on networks with arbitrary recovery time distributions. First we consider a hyperbolic partial differential equation (PDE) system, where the population of infective nodes and links are structured by age since infection. We show that the PDE system can be reduced to a system of integro-differential equations, which is analysed analytically and numerically. We investigate the asymptotic behaviour of the generalized model and provide an implicit analytical expression involving the final epidemic size and pairwise reproduction number. As an illustration of the applicability of the general model, we recover known results for the exponentially distributed and fixed recovery time cases. For gamma- and uniformly distributed infectious periods, new pairwise models are derived. Theoretical findings are confirmed by comparing results from the new pairwise model and explicit stochastic network simulation. A major benefit of the generalized pairwise model lies in approximating the time evolution of the epidemic
- …