2,571 research outputs found

    Universal interface width distributions at the depinning threshold

    Full text link
    We compute the probability distribution of the interface width at the depinning threshold, using recent powerful algorithms. It confirms the universality classes found previously. In all cases, the distribution is surprisingly well approximated by a generalized Gaussian theory of independant modes which decay with a characteristic propagator G(q)=1/q^(d+2 zeta); zeta, the roughness exponent, is computed independently. A functional renormalization analysis explains this result and allows to compute the small deviations, i.e. a universal kurtosis ratio, in agreement with numerics. We stress the importance of the Gaussian theory to interpret numerical data and experiments.Comment: 4 pages revtex4. See also the following article cond-mat/030146

    Depinning of elastic manifolds

    Full text link
    We compute roughness exponents of elastic d-dimensional manifolds in (d+1)-dimensional embedding spaces at the depinning transition for d=1,...,4. Our numerical method is rigorously based on a Hamiltonian formulation; it allows to determine the critical manifold in finite samples for an arbitrary convex elastic energy. For a harmonic elastic energy, we find values of the roughness exponent between the one-loop and the two-loop functional renormalization group result, in good agreement with earlier cellular automata simulations. We find that the harmonic model is unstable with respect both to slight stiffening and to weakening of the elastic potential. Anharmonic corrections to the elastic energy allow us to obtain the critical exponents of the quenched KPZ class.Comment: 4 pages, 4 figure

    Monte Carlo Dynamics of driven Flux Lines in Disordered Media

    Full text link
    We show that the common local Monte Carlo rules used to simulate the motion of driven flux lines in disordered media cannot capture the interplay between elasticity and disorder which lies at the heart of these systems. We therefore discuss a class of generalized Monte Carlo algorithms where an arbitrary number of line elements may move at the same time. We prove that all these dynamical rules have the same value of the critical force and possess phase spaces made up of a single ergodic component. A variant Monte Carlo algorithm allows to compute the critical force of a sample in a single pass through the system. We establish dynamical scaling properties and obtain precise values for the critical force, which is finite even for an unbounded distribution of the disorder. Extensions to higher dimensions are outlined.Comment: 4 pages, 3 figure

    Higher correlations, universal distributions and finite size scaling in the field theory of depinning

    Full text link
    Recently we constructed a renormalizable field theory up to two loops for the quasi-static depinning of elastic manifolds in a disordered environment. Here we explore further properties of the theory. We show how higher correlation functions of the displacement field can be computed. Drastic simplifications occur, unveiling much simpler diagrammatic rules than anticipated. This is applied to the universal scaled width-distribution. The expansion in d=4-epsilon predicts that the scaled distribution coincides to the lowest orders with the one for a Gaussian theory with propagator G(q)=1/q^(d+2 \zeta), zeta being the roughness exponent. The deviations from this Gaussian result are small and involve higher correlation functions, which are computed here for different boundary conditions. Other universal quantities are defined and evaluated: We perform a general analysis of the stability of the fixed point. We find that the correction-to-scaling exponent is omega=-epsilon and not -epsilon/3 as used in the analysis of some simulations. A more detailed study of the upper critical dimension is given, where the roughness of interfaces grows as a power of a logarithm instead of a pure power.Comment: 15 pages revtex4. See also preceding article cond-mat/030146

    Roughness at the depinning threshold for a long-range elastic string

    Full text link
    In this paper, we compute the roughness exponent zeta of a long-range elastic string, at the depinning threshold, in a random medium with high precision, using a numerical method which exploits the analytic structure of the problem (`no-passing' theorem), but avoids direct simulation of the evolution equations. This roughness exponent has recently been studied by simulations, functional renormalization group calculations, and by experiments (fracture of solids, liquid meniscus in 4He). Our result zeta = 0.390 +/- 0.002 is significantly larger than what was stated in previous simulations, which were consistent with a one-loop renormalization group calculation. The data are furthermore incompatible with the experimental results for crack propagation in solids and for a 4He contact line on a rough substrate. This implies that the experiments cannot be described by pure harmonic long-range elasticity in the quasi-static limit.Comment: 4 pages, 3 figure

    Width distribution of contact lines on a disordered substrate

    Full text link
    We have studied the roughness of a contact line of a liquid meniscus on a disordered substrate by measuring its width distribution. The comparison between the measured width distribution and the width distribution calculated in previous works, extended here to the case of open boundary conditions, confirms that the Joanny-de Gennes model is not sufficient to describe the dynamics of contact lines at the depinning threshold. This conclusion is in agreement with recent measurements which determine the roughness exponent by extrapolation to large system sizes.Comment: 4 pages, 3 figure

    Functional renormalization group for anisotropic depinning and relation to branching processes

    Full text link
    Using the functional renormalization group, we study the depinning of elastic objects in presence of anisotropy. We explicitly demonstrate how the KPZ-term is always generated, even in the limit of vanishing velocity, except where excluded by symmetry. We compute the beta-function to one loop taking properly into account the non-analyticity. This gives rise to additional terms, missed in earlier studies. A crucial question is whether the non-renormalization of the KPZ-coupling found at 1-loop order extends beyond the leading one. Using a Cole-Hopf-transformed theory we argue that it is indeed uncorrected to all orders. The resulting flow-equations describe a variety of physical situations. A careful analysis of the flow yields several non-trivial fixed points. All these fixed points are transient since they possess one unstable direction towards a runaway flow, which leaves open the question of the upper critical dimension. The runaway flow is dominated by a Landau-ghost-mode. For SR elasticity, using the Cole-Hopf transformed theory we identify a non-trivial 3-dimensional subspace which is invariant to all orders and contains all above fixed points as well as the Landau-mode. It belongs to a class of theories which describe branching and reaction-diffusion processes, of which some have been mapped onto directed percolation.Comment: 20 pages, 30 figures, revtex

    Shock statistics in higher-dimensional Burgers turbulence

    Full text link
    We conjecture the exact shock statistics in the inviscid decaying Burgers equation in D>1 dimensions, with a special class of correlated initial velocities, which reduce to Brownian for D=1. The prediction is based on a field-theory argument, and receives support from our numerical calculations. We find that, along any given direction, shocks sizes and locations are uncorrelated.Comment: 4 pages, 8 figure

    Quantum Hall Effect Wave Functions as Cyclic Representations of U_q(sl(2))

    Full text link
    Quantum Hall effect wave functions corresponding to the filling factors 1/2p+1, 2/2p+1, ..., 2p/2p+1, 1, are shown to form a basis of irreducible cyclic representation of the quantum algebra U_q(sl(2)) at q^{2p+1}=1. Thus, the wave functions \Psi_{P/Q} possessing filling factors P/Q<1 where Q is odd and P, Q are relatively prime integers are classified in terms of U_q(sl(2)).Comment: Version to appear in Jour. Phys.
    corecore