66 research outputs found

    Severe hyperkalemia is rescued by low-potassium diet in renal βENaC-deficient mice.

    Get PDF
    In adulthood, an induced nephron-specific deficiency of αENaC (Scnn1a) resulted in pseudohypoaldosteronism type 1 (PHA-1) with sodium loss, hyperkalemia, and metabolic acidosis that is rescued through high-sodium/low-potassium (HNa <sup>+</sup> /LK <sup>+</sup> ) diet. In the present study, we addressed whether renal βENaC expression is required for sodium and potassium balance or can be compensated by remaining (α and γ) ENaC subunits using adult nephron-specific knockout (Scnn1b <sup>Pax8/LC1</sup> ) mice. Upon induction, these mice present a severe PHA-1 phenotype with weight loss, hyperkalemia, and dehydration, but unlike the Scnn1a <sup>Pax8/LC1</sup> mice without persistent salt wasting. This is followed by a marked downregulation of STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) and Na <sup>+</sup> /Cl <sup>-</sup> co-transporter (NCC) protein expression and activity. Most of the experimental Scnn1b <sup>Pax8/LC1</sup> mice survived with a HNa <sup>+</sup> /LK <sup>+</sup> diet that partly normalized NCC phosphorylation, but not total NCC expression. Since salt loss was minor, we applied a standard-sodium/LK <sup>+</sup> diet that efficiently rescued these mice resulting in normokalemia and normalization of NCC phosphorylation, but not total NCC expression. A further switch to LNa <sup>+</sup> /standard-K <sup>+</sup> diet induced again a severe PHA-1-like phenotype, but with only transient salt wasting indicating that low-K <sup>+</sup> intake is critical to decrease hyperkalemia in a NCC-dependent manner. In conclusion, while the βENaC subunit plays only a minor role in sodium balance, severe hyperkalemia results in downregulation of NCC expression and activity. Our data demonstrate the importance to primarily correct the hyperkalemia with a low-potassium diet that normalizes NCC activity

    Osmoregulation during Long-Term Fasting in Lungfish and Elephant Seal: Old and New Lessons for the Nephrologist.

    No full text
    Vertebrates control the osmolality of their extra- and intra-cellular compartments despite large variations in salt and water intake. Aldosterone-dependent sodium reabsorption and vasopressin-dependent water transport in the distal nephron and collecting duct play a critical role in the final control of sodium and water balance. Long-term fasting (no eating, no drinking) represents an osmotic challenge for survival. Evolution has found very different solutions to meet this challenge. To illustrate this point, I will discuss osmoregulation of a mammal (elephant seal pup) and of a fish (lungfish) that are able to survive long-term fasting for months or even years. Homer W. Smith taught us how informative comparative anatomy and physiology of the kidney could help physiologists and nephrologists to better understand how the kidney works. In recent years, comparative genomics, transcriptomics and proteomics across the tree of life have led to the emergence of a new discipline, evolutionary medicine. In the near future, physiologists and nephrologists will benefit from this new field of investigation, thanks to its potential for the identification of novel drug targets and therapies

    Epithelial sodium channel (ENaC) and the control of blood pressure.

    No full text
    The amiloride-sensitive epithelial sodium channel (ENaC) constitutes the rate-limiting step for sodium reabsorption in epithelial cells that line the distal part of the renal tubule, the distal colon, the duct of several exocrine glands, and the lung. The activity of this channel is regulated by aldosterone and hormones involved in the maintenance of sodium balance, blood volume and blood pressure. In this review, we discuss recent advances in our understanding of ENaC function and regulation relevant to the control of sodium balance and blood pressure. The identification of novel drug targets should help in the development of the next generation of diuretics and of new therapies for the treatment of hypertension

    Disturbances of Na/K balance: pseudohypoaldosteronism revisited.

    No full text

    A Pathophysiological Model for COVID-19: Critical Importance of Transepithelial Sodium Transport upon Airway Infection.

    No full text
    The Coronavirus Disease 2019 (COVID-19) pandemic remains a serious public health problem and will continue to be until effective drugs and/or vaccines are available. The rational development of drugs critically depends on our understanding of disease mechanisms, that is, the physiology and pathophysiology underlying the function of the organ targeted by the virus. Since the beginning of the pandemic, tireless efforts around the globe have led to numerous publications on the virus, its receptor, its entry into the cell, its cytopathic effects, and how it triggers innate and native immunity but the role of apical sodium transport mediated by the epithelial sodium channel (ENaC) during the early phases of the infection in the airways has received little attention. We propose a pathophysiological model that defines the possible role of ENaC in this process

    Mutation of a tyrosine in the H3-H4 ectodomain of Na,K-ATPase alpha subunit confers ouabain resistance.

    No full text
    In a highly ouabain-resistant clone from the Madin-Darby canine kidney cell line (Ki > 4 mM), we have previously identified mutations (C113 to Y or C113 to F) in the first transmembrane helix (H1) of the Na,K-ATPase alpha subunit that increase the Ki of a ouabain-sensitive Na,K pump by 1000-fold. Here we report another mutation (Y317 to C) located in the extracellular segment that joins the third and fourth transmembrane domains (H3-H4 ectodomain) of the alpha subunit that also changes ouabain sensitivity of the Na pump. When this mutation (Y317C) was introduced into the Na,K-ATPase alpha 1 subunit of Xenopus laevis, the ouabain inhibition constant increased by a factor of 5, from 130 (wild type) to 800 nM (mutant). However, the expression of double mutants (C113Y + Y317C) in Xenopus oocytes resulted in highly ouabain-resistant Na,K pumps (Ki approximately 7 mM), reproducing the phenotype of the original Madin-Darby canine kidney cell line. When a more conservative change (Y317F) was introduced into the Na,K-ATPase alpha 1 subunit of X. laevis, the ouabain koff increased and expression of double mutants (C113Y + Y317F) resulted in an intermediate ouabain-resistant Na,K pump (Ki approximately 500 microM). We propose that, in addition to the previously identified H1-H2 ectodomain of Na,K-ATPase alpha subunit, the H3-H4 ectodomain also participates in the structure and/or the function of the ouabain binding site. In this respect, the Y317 plays a critical role since the most conservative change Y313 to F is sufficient to significantly affect ouabain binding

    Effects of thyromimetic drugs on aldosterone-dependent sodium transport in the toad bladder.

    No full text
    Aldosterone increases transepithelial Na+ transport in the urinary bladder of Bufo marinus. The response is characterized by 3 distinct phases: 1) a lag period of about 60 min, ii) an initial phase (early response) of about 2 hr during which Na+ transport increases rapidly and transepithelial electrical resistance falls, and iii) a late phase (late response) of about 4 to 6 hr during which Na+ transport still increases significantly but with very little change in resistance. Triiodothyronine (T3, 6 nM) added either 2 or 18 hr before aldosterone selectively antagonizes the late response. T3 per se (up to 6 nM) has no effect on base-line Na+ transport. The antagonist activity of T3 is only apparent after a latent period of about 6 to 8 hr. It is not rapidly reversible after a 4-hr washout of the hormone. The effects appear to be selective for thyromimetic drugs since reverse T3 (rT3) is inactive and isopropyldiiodothyronine (isoT2) is more active than T3. The relative activity of these analogs corresponds to their relative affinity for T3 nuclear binding sites which we have previously described. Our data suggest that T3 might control the expression of aldosterone by regulating gene expression, e.g. by the induction of specific proteins, which in turn will inhibit the late mineralocorticoid response, without interaction with the early response
    corecore