3,537 research outputs found

    Evaluating the methodology of social experiments

    Get PDF
    Welfare ; Econometric models

    Stochastic Volatility: Univariate and Multivariate Extensions

    Get PDF
    Stochastic volatility models, aka SVOL, are more difficult to estimate than standard time-varying volatility models (ARCH). Advances in the literature now offer well tested estimators for a basic univariate SVOL model. However, the basic model is too restrictive for many economic and finance applications. The use of the basic model can lead to biased volatility forecasts especially around crucial periods of high volatility. We extend the basic SVOL needs to allow for the leverage effect, through a correlation between observable and variance errors, and fat-tails in the conditional distribution. We develop a Bayesian Markov Chain Monte Carlo algorithm for this extended model. We also provide an algorithm to analyze a multivariate factor SVOL model. The method simultaneously performs finite sample inference and smoothing. We document the performance of the estimator and show why the extensions are warranted. We provide the researcher with a range of model diagnostics, such as the identification of outliers for stochastic volatility models or the assessment of the normality of the conditional distribution. We implement this methodology on a number of univariate financial time series. There is strong evidence of (1) non-normal conditional distributions for most series, and (2) a leverage effect for stock returns. We illustrate the robustness of the results to the choice of the prior distributions. These results have policy implications on decisions based upon prediction of volatility, especially when dealing with tail prediction as in risk management. Les modèles de volatilité stochastique, alias SVOL, sont plus durs à estimer que les modèles traditionnels de type ARCH. La littérature récente offre des estimateurs éprouvés pour un modèle SVOL univarié de base. Ce modèle est trop contraignant pour une utilisation en économie financière. Les prévisions de volatilité qu'il produit peuvent etre biaisées, particulièrement quand la volatilité est élevée. Nous généralisons le modèle de base en y ajoutant des effets de levier par le biais d'une corrélation entre les chocs observables et de variance, et la possibilité de distributions conditionnelles à queues épaisses. Nous développons un algorithme bayésien à chaînes markoviennes de Monte Carlo. Nous développons aussi un algorithme pour l'analyse d'un modèle SVOL multivarié à facteurs. Ces estimateurs permettent une inférence en échantillon fini pour les paramètres et les volatilités. Nous documentons les performances de l'estimateur et montrons que les extensions sont nécessaires. Nous testons la normalité des distributions conditionnelles. Cette méthode est mise en oeuvre sur plusieurs séries financières. Il y a une forte évidence (1) de distributions conditionnelles à queues épaisses, et (2) d'effets de levier pour les actifs financiers. Les résultats sont robustes et ont d'importantes implications sur les décisions fondées sur les prédictions de volatilité, particulièrement pour la gestion de risques.Stochastic volatility, ARCH, MCMC algorithm, leverage effect, risk management, fat-tailed distributions, Volatilité stochastique, ARCH, algorithme MCMC, effets de levier, gestion de risque, distributions à queues épaisses

    Why Don't Prices Rise During Periods of Peak Demand? Evidence from Scanner Data

    Get PDF
    We examine the retail prices and wholesale prices of a large supermarket chain in Chicago over seven and one-half years. We show that prices tend to fall during the seasonal demand peak for a product and that changes in retail margins account for most of those price changes; thus we add to the growing body of evidence that markups are counter-cyclical. The pattern of margin changes that we observe is consistent with loss leader' models such as the Lal and Matutes (1994) model of retailer pricing and advertising competition. Other models of imperfect competition are less consistent with retailer behavior. Manufacturer behavior plays a more limited role in the counter-cyclicality of prices.

    State Dependence and Alternative Explanations for Consumer Inertia

    Get PDF
    For many consumer packaged goods products, researchers have documented a form of state dependence whereby consumers become "loyal" to products they have consumed in the past. That is, consumers behave as though there is a utility premium from continuing to purchase the same product as they have purchased in the past or, equivalently, there is a psychological cost to switching products. However, it has not been established that this form of state dependence can be identified in the presence of consumer heterogeneity of an unknown form. Most importantly, before this inertia can be given a structural interpretation and used in policy experiments such as counterfactual pricing exercises,alternative explanations which might give rise to similar consumer behavior must be ruled out. We develop a flexible model of heterogeneity which can be given a semi-parametric interpretation and rule out alternative explanations for positive state dependence such as autocorrelated choice errors, consumer search, or consumer learning.

    Stochastic Volatility: Univariate and Multivariate Extensions

    Get PDF
    Les modèles de volatilité stochastique, alias SVOL, sont plus durs à estimer que les modèles traditionnels de type ARCH. La littérature récente offre des estimateurs éprouvés pour un modèle SVOL univarié de base. Ce modèle est trop contraignant pour une utilisation en économie financière. Les prévisions de volatilité qu'il produit peuvent etre biaisées, particulièrement quand la volatilité est élevée. Nous généralisons le modèle de base en y ajoutant des effets de levier par le biais d'une corrélation entre les chocs observables et de variance, et la possibilité de distributions conditionnelles à queues épaisses. Nous développons un algorithme bayésien à chaînes markoviennes de Monte Carlo. Nous développons aussi un algorithme pour l'analyse d'un modèle SVOL multivarié à facteurs. Ces estimateurs permettent une inférence en échantillon fini pour les paramètres et les volatilités. Nous documentons les performances de l'estimateur et montrons que les extensions sont nécessaires. Nous testons la normalité des distributions conditionnelles. Cette méthode est mise en oeuvre sur plusieurs séries financières. Il y a une forte évidence (1) de distributions conditionnelles à queues épaisses, et (2) d'effets de levier pour les actifs financiers. Les résultats sont robustes et ont d'importantes implications sur les décisions fondées sur les prédictions de volatilité, particulièrement pour la gestion de risques.Stochastic volatility models, aka SVOL, are more difficult to estimate than standard time-varying volatility models (ARCH). Advances in the literature now offer well tested estimators for a basic univariate SVOL model. However, the basic model is too restrictive for many economic and finance applications. The use of the basic model can lead to biased volatility forecasts especially around crucial periods of high volatility. We extend the basic SVOL needs to allow for the leverage effect, through a correlation between observable and variance errors, and fat-tails in the conditional distribution. We develop a Bayesian Markov Chain Monte Carlo algorithm for this extended model. We also provide an algorithm to analyze a multivariate factor SVOL model. The method simultaneously performs finite sample inference and smoothing. We document the performance of the estimator and show why the extensions are warranted. We provide the researcher with a range of model diagnostics, such as the identification of outliers for stochastic volatility models or the assessment of the normality of the conditional distribution. We implement this methodology on a number of univariate financial time series. There is strong evidence of (1) non-normal conditional distributions for most series, and (2) a leverage effect for stock returns. We illustrate the robustness of the results to the choice of the prior distributions. These results have policy implications on decisions based upon prediction of volatility, especially when dealing with tail prediction as in risk management

    Models and Priors for Multivariate Stochastic Volatility

    Get PDF
    Discrete time stochastic volatility models (hereafter SVOL) are noticeably harder to estimate than the successful ARCH family of models. In this paper, we develop methods for finite sample inference, smoothing, and prediction for a number of univariate and multivariate SVOL models. Specifically, we model fat-tailed and skewed conditional distributions, correlated errors distributions (leverage effect), and two multivariate models, a stochastic factor structure model and a stochastic discount dynamic model. We specify the models as a hierarchy of conditional probability distributions: p(data/volatilities), p(volatilities/ parameters) and p(parameters). This hierarchy provides a natural environment for the construction of stochastic volatility models that depart from standard distributional assumptions. Given a model and the data, inference and prediction are based on the joint posterior distribution of the volatilities and the parameters which we simulate via Markov chain Monte Carlo (MCMC) methods. Our approach also provides a sensitivity analysis for parameter inference and an outlier diagnostic. Our framework, therefore, provides a general perspective on specification and implementation of stochastic volatility models. We apply various extensions of the basic SVOL model to many financial time series. We find strong evidence of non-normal conditional distributions for stock returns and exchange rates. We also find some evidence of correlated errors for stock returns. These departures from the basic model affect persistence and therefore should be incorporated if the model is used for variance prediction. Les modèles de volatilité stochastique (ci-après) SVOL sont singulièrement plus difficiles à estimer que les modèles de type ARCH qui connaissent un grand succès. Dans cet article, nous développons des méthodes en échantillons finis pour l'inférence et la prédiction, ceci pour un nombre de modèles SVOL univariés et multivariés. Plus précisément nous modélisons des distributions conditionnelles non-normales, des modèles avec effets de levier, et deux modèles multivariés; un modèle a structure de facteurs et un modèle d'escompte dynamique. Nous spécifions les modèles par une hiérarchie de distributions conditionnelles : p(données|volatilités), p(volatilités|paramètres), et p(paramètres). Cette hiérarchie fournit un environnement naturel pour l'élaboration de modèles de volatilité stochastique plus généraux que le modèle de base. Pour un modèle et un échantillon, l'inférence et la prédiction sont fondées sur la distribution postérieure jointe des volatilités et des paramètres que nous simulons avec des méthodes de Chaînes de Markov et de Monte Carlo (MCMC). Notre approche fournit aussi une analyse de sensitivité pour les paramètres et une analyse pour les outliers. Le cadre d'estimation fournit donc une perspective générale sur la spécification et l'implémentation des modèles de volatilité stochastique. Nous appliquons plusieurs extensions du modèle SVOL de base à de nombreuses séries financières. Il y a une forte évidence de non-normalité des distributions conditionnelles. Il y aussi une certaine évidence de corrélation des erreurs pour les retours sur actions. Ces élaborations du modèle de base ont une influence sur la persistance et devraient être incorporées en vue de prédictions de volatilité.Stochastic volatility; Forecasting and smoothing; Metropolis algorithm, Volatilité stochastique ; Inférence et prédiction ; Algorythme Metropolis
    corecore