41,142 research outputs found

    A non-perturbative mechanism for elementary particle mass generation

    Get PDF
    Taking inspiration from lattice QCD data, we argue that a finite non-perturbative contribution to the quark mass is generated as a consequence of the dynamical phenomenon of spontaneous chiral symmetry breaking, in turn triggered by the explicitly breaking of chiral symmetry induced by the critical Wilson term in the action. In pure lattice QCD this mass term cannot be separated from the unavoidably associated linearly divergent contribution. However, if QCD is enlarged to a theory where also a scalar field is present, coupled to an SU(2) doublet of fermions via a Yukawa and a Wilson-like term, then in the phase where the scalar field takes a non-vanishing expectation value, a dynamically generated and "naturally" light fermion mass (numerically unrelated to the expectation value of the scalar field) is conjectured to emerge at a critical value of the Yukawa coupling where the symmetry of the model is maximally enhanced. Masses dynamically generated in this way display a natural hierarchy according to which the stronger is the strongest of the interactions the fermion is subjected to the larger is its mass.Comment: Added more information in Fig 1. Added Fig. 10. Added an extra Appendix. Restructured a few sentences according to referee suggestions. Corrected a few misprints. All results unchanged. Now 50 pages and 10 Figure

    Chirally improving Wilson fermions II. Four-quark operators

    Get PDF
    In this paper we discuss how the peculiar properties of twisted lattice QCD at maximal twist can be employed to set up a consistent computational scheme in which, despite the explicit breaking of chiral symmetry induced by the presence of the Wilson and mass terms in the action, it is possible to completely bypass the problem of wrong chirality and parity mixings in the computation of the CP-conserving matrix elements of the ΔS=1,2\Delta S=1,2 effective weak Hamiltonian and at the same time have a positive determinant for non-degenerate quarks as well as full O(aa) improvement in on-shell quantities with no need of improving the lattice action and the operators.Comment: Replaced with published version in JHEP style: 43 pages, no figures. Added few references and discussion on "critical mass and O(a) improvement" as well as on "tests and numerical issues" in the Conclusions (sect. 6

    A temperature-dependent phase-field model for phase separation and damage

    Get PDF
    In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature (cf., e.g., [C. Heinemann, C. Kraus: Existence results of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage. Adv. Math. Sci. Appl. 21 (2011), 321--359] and [C. Heinemann, C. Kraus: Existence results for diffuse interface models describing phase separation and damage. European J. Appl. Math. 24 (2013), 179--211]), we encompass in the model thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More in particular, we prove the existence of "entropic weak solutions", resorting to a solvability concept first introduced in [E. Feireisl: Mathematical theory of compressible, viscous, and heat conducting fluids. Comput. Math. Appl. 53 (2007), 461--490] in the framework of Fourier-Navier-Stokes systems and then recently employed in [E. Feireisl, H. Petzeltov\'a, E. Rocca: Existence of solutions to a phase transition model with microscopic movements. Math. Methods Appl. Sci. 32 (2009), 1345--1369], [E. Rocca, R. Rossi: "Entropic" solutions to a thermodynamically consistent PDE system for phase transitions and damage. SIAM J. Math. Anal., 47 (2015), 2519--2586] for the study of PDE systems for phase transition and damage. Our global-in-time existence result is obtained by passing to the limit in a carefully devised time-discretization scheme

    Coherent phenomena in semiconductors

    Full text link
    A review of coherent phenomena in photoexcited semiconductors is presented. In particular, two classes of phenomena are considered: On the one hand the role played by optically-induced phase coherence in the ultrafast spectroscopy of semiconductors; On the other hand the Coulomb-induced effects on the coherent optical response of low-dimensional structures. All the phenomena discussed in the paper are analyzed in terms of a theoretical framework based on the density-matrix formalism. Due to its generality, this quantum-kinetic approach allows a realistic description of coherent as well as incoherent, i.e. phase-breaking, processes, thus providing quantitative information on the coupled ---coherent vs. incoherent--- carrier dynamics in photoexcited semiconductors. The primary goal of the paper is to discuss the concept of quantum-mechanical phase coherence as well as its relevance and implications on semiconductor physics and technology. In particular, we will discuss the dominant role played by optically induced phase coherence on the process of carrier photogeneration and relaxation in bulk systems. We will then review typical field-induced coherent phenomena in semiconductor superlattices such as Bloch oscillations and Wannier-Stark localization. Finally, we will discuss the dominant role played by Coulomb correlation on the linear and non-linear optical spectra of realistic quantum-wire structures.Comment: Topical review in Semiconductor Science and Technology (in press) (Some of the figures are not available in electronic form

    Quantum Properties of a Which-Way Detector

    Full text link
    We explore quantum properties of a which-way detector using three versions of an idealized two slit arrangements. Firstly we derive complementarity relations for the detector; secondly we show how the "experiment" may be altered in such a way that using single position measurement on the screen we can obtain quantum erasure. Finally we show how to construct a superposition of "wave" and "particle" components

    Strong coupling expansion of chiral models

    Full text link
    A general precedure is outlined for an algorithmic implementation of the strong coupling expansion of lattice chiral models on arbitrary lattices. A symbolic character expansion in terms of connected values of group integrals on skeleton diagrams may be obtained by a fully computerized approach.Comment: 2 pages, PostScript file, contribution to conference LATTICE '9

    Atomic detection in microwave cavity experiments: a dynamical model

    Get PDF
    We construct a model for the detection of one atom maser in the context of cavity Quantum Electrodynamics (QED) used to study coherence properties of superpositions of electromagnetic modes. Analytic expressions for the atomic ionization are obtained, considering the imperfections of the measurement process due to the probabilistic nature of the interactions between the ionization field and the atoms. Limited efficiency and false counting rates are considered in a dynamical context, and consequent results on the information about the state of the cavity modes are obtained.Comment: 12 pages, 1 figur

    Protecting, Enhancing and Reviving Entanglement

    Full text link
    We propose a strategies not only to protect but also to enhance and revive the entanglement in a double Jaynes-Cummings model. We show that such surprising features arises when Zeno-like measurements are performed during the dynamical process
    • …
    corecore