43 research outputs found

    Atopic dermatitis

    Get PDF
    Atopic dermatitis (AD) is a common in ammatory skin disease, clinically characterized by recur- rent eczematous lesions and intense itching, leading to excoriations and susceptibility to cutaneous infections. Although it is considered a pediatric disorder, mainly starting in infancy, it is also very common in adults. Etiology of AD is complex and multifactorial: interaction between genetic susceptibility and environment, but also cutaneous barrier impairment, change in microbiome composition and innate and adaptive immune dysregulation are the main factors involved in the pathogenesis of the disease. Originally, the disorder was considered mediated by an imbalance towards a T-helper 2 response and excessive IgE production to aller- gens, but now it is recognized as a lifelong disposition with variable clinical expressivity, where dysfunctions of the epidermal barrier, immune system and microbiome play a central role. AD leads to a substantial psycho- social burden on patients and their relatives and increases the risk of other allergic and non allergic disorders. e real economic impact of AD is di cult to measure due to the broad spectrum of disease severity and the multiple direct and indirect costs, but the overall medical expenses seem to be very high and similar to those of other diseases such as diabetes. Currently, a multiple therapeutic approach is aimed only at improving the skin state, reducing itching and keeping a stable condition. New safety and curative treatments may be devel- oped only after enhancing our understanding on the pathogenesis of AD and the heterogeneity of its clinical manifestations. (www.actabiomedica.it

    Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical in situ study yielding evidence of maturational lineages: Biliary tree stem cell niche

    Get PDF
    Stem/progenitors have been identified intrahepatically in the canals of Hering and extrahepatically in glands of the biliary tree. Glands of the biliary tree (peribiliary glands) are tubulo-alveolar glands with mucinous and serous acini, located deep within intrahepatic and extrahepatic bile ducts. We have shown that biliary tree stem/progenitors (BTSCs) are multipotent, giving rise in vitro and in vivo to hepatocytes, cholangiocytes or pancreatic islets. Cells with the phenotype of BTSCs are located at the bottom of the peribiliary glands near the fibromuscular layer. They are phenotypically heterogeneous, expressing transcription factors as well as surface and cytoplasmic markers for stem/progenitors of liver (e.g. SOX9/17), pancreas (e.g. PDX1) and endoderm (e.g. SOX17, EpCAM, NCAM, CXCR4, Lgr5, OCT4) but not for mature markers (e.g. albumin, secretin receptor or insulin). Subpopulations co-expressing liver and pancreatic markers (e.g. PDX1+/SOX17+) are EpCAM+/−, and are assumed to be the most primitive of the BTSC subpopulations. Their descendants undergo a maturational lineage process from the interior to the surface of ducts and vary in the mature cells generated: pancreatic cells in hepatopancreatic ducts, liver cells in large intrahepatic bile ducts, and bile duct cells along most of the biliary tree. We hypothesize that there is ongoing organogenesis throughout life, with BTSCs giving rise to hepatic stem cells in the canals of Hering and to committed progenitors within the pancreas. The BTSCs are likely to be central to normal tissue turnover and injury repair and to be key elements in the pathophysiology of liver, pancreas and biliary tree diseases, including oncogenesis

    Transplantation of human fetal biliary tree stem/progenitor cells into two patients with advanced liver cirrhosis.

    Get PDF
    Efforts to identify cell sources and approaches for cell therapy of liver diseases are ongoing, taking into consideration the limits recognized for adult liver tissue and for other forms of stem cells. In the present study, we described the first procedure of via hepatic artery transplantation of human fetal biliary tree stem cells in patients with advanced cirrhosis.MethodsThe cells were immune-sorted from human fetal biliary tree by protocols in accordance with current good manufacturing practice (cGMP) and extensively characterized. Two patients with advanced cirrhosis (Child-Pugh C) have been submitted to the procedure and observed through a 12 months follow-up.ResultsThe resulting procedure was found absolutely safe. Immuno-suppressants were not required, and the patients did not display any adverse effects correlated with cell transplantation or suggestive of immunological complications. From a clinical point of view, both patients showed biochemical and clinical improvement during the 6 month follow-up (Table1), and the second patient maintained a stable improvement for 12 months.ConclusionThis report represents proof of the concept that the human fetal biliary tree stem cells are a suitable and large source for cell therapy of liver cirrhosis. The isolation procedure can be carried out under cGMP conditions and, finally, the infusion procedure is easy and safe for the patients. This represents the basis for forthcoming controlled clinical trials

    The Silent Epidemic of Diabetic Ketoacidosis at Diagnosis of Type 1 Diabetes in Children and Adolescents in Italy During the COVID-19 Pandemic in 2020

    Get PDF
    To compare the frequency of diabetic ketoacidosis (DKA) at diagnosis of type 1 diabetes in Italy during the COVID-19 pandemic in 2020 with the frequency of DKA during 2017-2019

    Intra-hepatic and extra-hepatic cholangiocarcinoma: New insight into epidemiology and risk factors

    No full text
    Cholangiocarcinoma (CCA) is a malignant tumour that arises from biliary epithelium at any portion of the biliary tree. CCA is currently classified as intra-hepatic or extra-hepatic CCA (EH-CCA). Recent evidences suggest that intra-hepatic CCA (IH-CCA) and EH-CCA are biologically different cancers, giving further support to a number of recent epidemiological studies showing large differences in terms of incidence, mortality and risk factors. The purpose of this manuscript is to review recent literature dealing with the descriptive epidemiology and risk factors of CCA with a special effort to compare IH- with EH-CCA

    Cholangiocarcinoma: epidemiology and risk factors.

    No full text
    Cholangiocarcinoma (CCA) is a malignant tumour, arising from biliary epithelium at any portion of the biliary tree, characterized by a bad prognosis and poor response to current therapies. CCA is currently classified as intrahepatic (IHCCA) or extrahepatic (EH-CCA). The distinction between IH-CCA and EH-CCA has become increasingly important, as the epidemiological features (i.e., incidence and risk factors), the biologic and pathologic characteristics and the clinical course are largely different. New insights into hepatic and biliary tree stem cell niches organization, into cancer cells of origin and cancer stem cell biology are currently under evaluation as the biological bases of the observed heterogeneity of CCA and could explain the differences in epidemiology and risk factors between IH- and EH-CCA. The purpose of this manuscript is to revise recent literature dealing with the descriptive epidemiology, risk factors and clinical-pathological heterogeneity of CCA with a special effort to compare IH- versus EH-CCA

    Polycystins play a key role in the modulation of cholangiocyte proliferation

    No full text
    Background: Polycystin-1 and -2 (PC-1 and PC-2) are critical components of primary cilia, which act as mechanosensors and drive cell response to injury. PC-1 activation involves the cleavage/processing of PC-1 cytoplasmic tail, driven by regulated intramembrane proteolysis or ubiquitine/proteasome, translocation in the nucleus and activation of transcription factors. Mutations of PC-1 or PC-2 occur in polycystic liver where cholangiocyte proliferation is enhanced. Aim: We evaluated the involvement of PC-1 and PC-2 in modulating cholangiocyte proliferation. Methods: We investigated rat cholangiocytes induced to proliferate by 17 beta-oestradiol. Proliferation was evaluated by PCNA immunoblotting or [(3)H]-thymidine incorporation into DNA. PC-1 silencing was performed by siRNA, while inhibition of regulated intramembrane proteolysis or proteasome by gamma-secretase inhibitor, leupeptin or MG115. Results: Cholangiocyte proliferation was associated with decreased PC-1 and PC-2 expression, which was inversely correlated with enhanced PCNA. The selective silencing of PC-1 induced activation of cholangiocyte proliferation in association with decreased PC-1 expression. Two different regulated intramembrane proteolysis inhibitors, gamma-secretase-inhibitor and leupeptin, and the proteasome inhibitor, MG115, abolished the 17 beta-oestradiol proliferative effect. Conclusions: PC-1 and PC-2 play a major role as modulators of cholangiocyte proliferation suggesting that primary cilia may act as sensors of cell injury driving, when activated, a proliferative cholangiocyte response to trigger the reparative processes. (C) 2009 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved
    corecore