95 research outputs found
Twitter-based analysis of the dynamics of collective attention to political parties
Large-scale data from social media have a significant potential to describe
complex phenomena in real world and to anticipate collective behaviors such as
information spreading and social trends. One specific case of study is
represented by the collective attention to the action of political parties. Not
surprisingly, researchers and stakeholders tried to correlate parties' presence
on social media with their performances in elections. Despite the many efforts,
results are still inconclusive since this kind of data is often very noisy and
significant signals could be covered by (largely unknown) statistical
fluctuations. In this paper we consider the number of tweets (tweet volume) of
a party as a proxy of collective attention to the party, identify the dynamics
of the volume, and show that this quantity has some information on the
elections outcome. We find that the distribution of the tweet volume for each
party follows a log-normal distribution with a positive autocorrelation of the
volume over short terms, which indicates the volume has large fluctuations of
the log-normal distribution yet with a short-term tendency. Furthermore, by
measuring the ratio of two consecutive daily tweet volumes, we find that the
evolution of the daily volume of a party can be described by means of a
geometric Brownian motion (i.e., the logarithm of the volume moves randomly
with a trend). Finally, we determine the optimal period of averaging tweet
volume for reducing fluctuations and extracting short-term tendencies. We
conclude that the tweet volume is a good indicator of parties' success in the
elections when considered over an optimal time window. Our study identifies the
statistical nature of collective attention to political issues and sheds light
on how to model the dynamics of collective attention in social media.Comment: 16 pages, 7 figures, 3 tables. Published in PLoS ON
Renin-angiotensin system blockers and susceptibility to COVID-19:an international, open science, cohort analysis
Background: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and international generalisability. We aimed to determine whether use of ACEIs or ARBs is associated with an increased susceptibility to COVID-19 in patients with hypertension.Methods: In this international, open science, cohort analysis, we used electronic health records from Spain (Information Systems for Research in Primary Care [SIDIAP]) and the USA (Columbia University Irving Medical Center data warehouse [CUIMC] and Department of Veterans Affairs Observational Medical Outcomes Partnership [VA-OMOP]) to identify patients aged 18 years or older with at least one prescription for ACEIs and ARBs (target cohort) or calcium channel blockers (CCBs) and thiazide or thiazide-like diuretics (THZs; comparator cohort) between Nov 1, 2019, and Jan 31, 2020. Users were defined separately as receiving either monotherapy with these four drug classes, or monotherapy or combination therapy (combination use) with other antihypertensive medications. We assessed four outcomes: COVID-19 diagnosis; hospital admission with COVID-19; hospital admission with pneumonia; and hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis. We built large-scale propensity score methods derived through a data-driven approach and negative control experiments across ten pairwise comparisons, with results meta-analysed to generate 1280 study effects. For each study effect, we did negative control outcome experiments using a possible 123 controls identified through a data-rich algorithm. This process used a set of predefined baseline patient characteristics to provide the most accurate prediction of treatment and balance among patient cohorts across characteristics. The study is registered with the EU Post-Authorisation Studies register, EUPAS35296.Findings: Among 1 355 349 antihypertensive users (363 785 ACEI or ARB monotherapy users, 248 915 CCB or THZ monotherapy users, 711 799 ACEI or ARB combination users, and 473 076 CCB or THZ combination users) included in analyses, no association was observed between COVID-19 diagnosis and exposure to ACEI or ARB monotherapy versus CCB or THZ monotherapy (calibrated hazard ratio [HR] 0·98, 95% CI 0·84-1·14) or combination use exposure (1·01, 0·90-1·15). ACEIs alone similarly showed no relative risk difference when compared with CCB or THZ monotherapy (HR 0·91, 95% CI 0·68-1·21; with heterogeneity of >40%) or combination use (0·95, 0·83-1·07). Directly comparing ACEIs with ARBs demonstrated a moderately lower risk with ACEIs, which was significant with combination use (HR 0·88, 95% CI 0·79-0·99) and non-significant for monotherapy (0·85, 0·69-1·05). We observed no significant difference between drug classes for risk of hospital admission with COVID-19, hospital admission with pneumonia, or hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis across all comparisons.Interpretation: No clinically significant increased risk of COVID-19 diagnosis or hospital admission-related outcomes associated with ACEI or ARB use was observed, suggesting users should not discontinue or change their treatment to decrease their risk of COVID-19.</p
MLL2 Is Required in Oocytes for Bulk Histone 3 Lysine 4 Trimethylation and Transcriptional Silencing
Conditional knockout mouse strategies identify the histone methyltranferase MLL2 as a key player in epigenetic reprogramming of female gametes
The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia
BACKGROUND: A systems approach to understanding the etiology of schizophrenia requires a theory which is able to integrate genetic as well as neurodevelopmental factors. PRESENTATION OF THE HYPOTHESIS: Based on a co-localization of loci approach and a large amount of circumstantial evidence, we here propose that a functional deficiency of glial growth factors and of growth factors produced by glial cells are among the distal causes in the genotype-to-phenotype chain leading to the development of schizophrenia. These factors include neuregulin, insulin-like growth factor I, insulin, epidermal growth factor, neurotrophic growth factors, erbB receptors, phosphatidylinositol-3 kinase, growth arrest specific genes, neuritin, tumor necrosis factor alpha, glutamate, NMDA and cholinergic receptors. A genetically and epigenetically determined low baseline of glial growth factor signaling and synaptic strength is expected to increase the vulnerability for additional reductions (e.g., by viruses such as HHV-6 and JC virus infecting glial cells). This should lead to a weakening of the positive feedback loop between the presynaptic neuron and its targets, and below a certain threshold to synaptic destabilization and schizophrenia. TESTING THE HYPOTHESIS: Supported by informed conjectures and empirical facts, the hypothesis makes an attractive case for a large number of further investigations. IMPLICATIONS OF THE HYPOTHESIS: The hypothesis suggests glial cells as the locus of the genes-environment interactions in schizophrenia, with glial asthenia as an important factor for the genetic liability to the disorder, and an increase of prolactin and/or insulin as possible working mechanisms of traditional and atypical neuroleptic treatments
- …