14 research outputs found

    Assessing Agreement between Radiomic Features Computed for Multiple CT Imaging Settings

    Get PDF
    Objectives: Radiomics utilizes quantitative image features (QIFs) to characterize tumor phenotype. In practice, radiological images are obtained from different vendors’ equipment using various imaging acquisition settings. Our objective was to assess the inter-setting agreement of QIFs computed from CT images by varying two parameters, slice thickness and reconstruction algorithm. Materials and Methods: CT images from an IRB-approved/HIPAA-compliant study assessing thirty-two lung cancer patients were included for the analysis. Each scan’s raw data were reconstructed into six imaging series using combinations of two reconstruction algorithms (Lung[L] and Standard[S]) and three slice thicknesses (1.25mm, 2.5mm and 5mm), i.e., 1.25L, 1.25S, 2.5L, 2.5S, 5L and 5S. For each imaging-setting, 89 well-defined QIFs were computed for each of the 32 tumors (one tumor per patient). The six settings led to 15 inter-setting comparisons (combinatorial pairs). To reduce QIF redundancy, hierarchical clustering was done. Concordance correlation coefficients (CCCs) were used to assess inter-setting agreement of the non-redundant feature groups. The CCC of each group was assessed by averaging CCCs of QIFs in the group. Results: Twenty-three non-redundant feature groups were created. Across all feature groups, the best inter-setting agreements (CCCs>0.8) were 1.25S vs 2.5S, 1.25L vs 2.5L, and 2.5S vs 5S; the worst (CCCs0.8 across all imaging settings. Conclusions: Varying degrees of inter-setting disagreements of QIFs exist when features are computed from CT images reconstructed using different algorithms and slice thicknesses. Our findings highlight the importance of harmonizing imaging acquisition for obtaining consistent QIFs to study tumor imaging phonotype

    An example of a lung lesion on the images reconstructed at the six acquisition settings.

    No full text
    <p>The settings of 1.25L, 2.5L and 5L line at the upper row. The settings of 1.25S, 2.5S and 5S line at the bottom row. For example, the name of setting 1.25L means the imaging setting of slice thickness of 1.25mm and Lung reconstruction. Arrow heads in the image of setting 1.25L indicate the tumor lesion.</p

    Network Centrality in the Human Functional Connectome

    No full text
    The network architecture of functional connectivity within the human brain connectome is poorly understood at the voxel level. Here, using resting state functional magnetic resonance imaging data from 1003 healthy adults, we investigate a broad array of network centrality measures to provide novel insights into connectivity within the whole-brain functional network (i.e., the functional connectome). We first assemble and visualize the voxel-wise (4 mm) functional connectome as a functional network. We then demonstrate that each centrality measure captures different aspects of connectivity, highlighting the importance of considering both global and local connectivity properties of the functional connectome. Beyond &quot;detecting functional hubs,&quot; we treat centrality as measures of functional connectivity within the brain connectome and demonstrate their reliability and phenotypic correlates (i.e., age and sex). Specifically, our analyses reveal age-related decreases in degree centrality, but not eigenvector centrality, within precuneus and posterior cingulate regions. This implies that while local or (direct) connectivity decreases with age, connections with hub-like regions within the brain remain stable with age at a global level. In sum, these findings demonstrate the nonredundancy of various centrality measures and raise questions regarding their underlying physiological mechanisms that may be relevant to the study of neurodegenerative and psychiatric disorders

    Levers of logistics service providers’ efficiency in urban distribution

    No full text
    This paper identifies the most important factors that influence the productivity of the urban fleet of a Logistics Service Provider (LSP). Through a regression analysis on a dataset from distribution warehouses of a single LSP, three main levers are shown to have significant impacts on productivity, namely the network design, the vehicle loading strategy, and the business environment wherein the operations are carried out. This paper contributes to bridge the gap about the lack of works addressing the efficiency of LSPs operating in urban areas, by performing a detailed empirical analysis instead of taking an aggregated company perspective

    Network centrality in the human functional connectome

    No full text
    Item does not contain fulltextThe network architecture of functional connectivity within the human brain connectome is poorly understood at the voxel level. Here, using resting state functional magnetic resonance imaging data from 1003 healthy adults, we investigate a broad array of network centrality measures to provide novel insights into connectivity within the whole-brain functional network (i.e., the functional connectome). We first assemble and visualize the voxel-wise (4 mm) functional connectome as a functional network. We then demonstrate that each centrality measure captures different aspects of connectivity, highlighting the importance of considering both global and local connectivity properties of the functional connectome. Beyond "detecting functional hubs," we treat centrality as measures of functional connectivity within the brain connectome and demonstrate their reliability and phenotypic correlates (i.e., age and sex). Specifically, our analyses reveal age-related decreases in degree centrality, but not eigenvector centrality, within precuneus and posterior cingulate regions. This implies that while local or (direct) connectivity decreases with age, connections with hub-like regions within the brain remain stable with age at a global level. In sum, these findings demonstrate the nonredundancy of various centrality measures and raise questions regarding their underlying physiological mechanisms that may be relevant to the study of neurodegenerative and psychiatric disorders
    corecore