273 research outputs found

    In memory of Marcos Vidal (1974-2016)

    Get PDF
    With the untimely death of Marcos Vidal, we have lost a good friend and a creative, brilliant colleague who made important contributions to the field of cancer biology through fruit fly research. Marcos began his research into Drosophila at Ross Cagan's laboratory in 2003, first at Washington University in St Louis and later at Mount Sinai Hospital in New York. In 2009 Marcos was appointed as Research Group Leader at the Beatson Institute for Cancer Research in Glasgow

    Embracing risk

    Get PDF
    I entered the science field because I imagined that scientists were society's “professional risk takers”, that they like surfing out on the edge. I understood that a lot of science – perhaps even most science – has to be a solid exploration of partly understood phenomena. But any science that confronts a difficult problem has to start with risk. Most people are at least a bit suspicious of risk, and scientists such as myself are no exception. Recently, risk-taking has been under attack financially, but this Editorial is not about that. I am writing about the long view and the messages we send to our trainees. I am Senior Associate Dean of the graduate school at Mount Sinai and have had the privilege to discuss these issues with the next generation of scientists, for whom I care very deeply. Are we preparing you to embrace risk

    Drug screening using model systems: some basics

    Get PDF
    An increasing number of laboratories that focus on model systems are considering drug screening. Executing a drug screen is complicated enough. But the path for moving initial hits towards the clinic requires a different knowledge base and even a different mindset. In this Editorial I discuss the importance of doing some homework before you start screening. 'Lead hits', 'patentable chemical space' and 'druggability' are all concepts worth exploring when deciding which screening path to take. I discuss some of the lessons I learned that may be useful as you navigate the screening matrix

    From fish tank to bedside in cancer therapy: an interview with Leonard Zon

    Get PDF
    No abstract available

    A Drosophila functional evaluation of candidates from human genome-wide association studies of type 2 diabetes and related metabolic traits identifies tissue-specific roles for dHHEX

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) identify regions of the genome that are associated with particular traits, but do not typically identify specific causative genetic elements. For example, while a large number of single nucleotide polymorphisms associated with type 2 diabetes (T2D) and related traits have been identified by human GWAS, only a few genes have functional evidence to support or to rule out a role in cellular metabolism or dietary interactions. Here, we use a recently developed Drosophila model in which high-sucrose feeding induces phenotypes similar to T2D to assess orthologs of human GWAS-identified candidate genes for risk of T2D and related traits. RESULTS: Disrupting orthologs of certain T2D candidate genes (HHEX, THADA, PPARG, KCNJ11) led to sucrose-dependent toxicity. Tissue-specific knockdown of the HHEX ortholog dHHEX (CG7056) directed metabolic defects and enhanced lethality; for example, fat-body-specific loss of dHHEX led to increased hemolymph glucose and reduced insulin sensitivity. CONCLUSION: Candidate genes identified in human genetic studies of metabolic traits can be prioritized and functionally characterized using a simple Drosophila approach. To our knowledge, this is the first large-scale effort to study the functional interaction between GWAS-identified candidate genes and an environmental risk factor such as diet in a model organism system

    The Drosophila CD2AP/CIN85 orthologue Cindr regulates junctions and cytoskeleton dynamics during tissue patterning

    Get PDF
    Developing tissues require cells to undergo intricate processes to shift into appropriate niches. This requires a functional connection between adhesion-mediating events at the cell surface and a cytoskeletal reorganization to permit directed movement. A small number of proteins are proposed to link these processes. Here, we identify one candidate, Cindr, the sole Drosophila melanogaster member of the CD2AP/CIN85 family (this family has been previously implicated in a variety of processes). Using D. melanogaster retina, we demonstrate that Cindr links cell surface junctions (E-cadherin) and adhesion (Roughest) with multiple components of the actin cytoskeleton. Reducing cindr activity leads to defects in local cell movement and, consequently, tissue patterning and cell death. Cindr activity is required for normal localization of Drosophila E-cadherin and Roughest, and we show additional physical and functional links to multiple components of the actin cytoskeleton, including the actin-capping proteins capping protein alpha and capping protein beta. Together, these data demonstrate that Cindr is involved in dynamic cell rearrangement in an emerging epithelium

    Cell competition and cancer from Drosophila to mammals

    Get PDF
    Throughout an individual’s life, somatic cells acquire cancer-associated mutations. A fraction of these mutations trigger tumour formation, a phenomenon partly driven by the interplay of mutant and wild-type cell clones competing for dominance; conversely, other mutations function against tumour initiation. This mechanism of ‘cell competition’, can shift clone dynamics by evaluating the relative status of clonal populations, promoting ‘winners’ and eliminating ‘losers’. This review examines the role of cell competition in the context of tumorigenesis, tumour progression and therapeutic intervention

    A Quantitative Method to Analyze Drosophila Pupal Eye Patterning

    Get PDF
    BACKGROUND:The Drosophila pupal eye has become a popular paradigm for understanding morphogenesis and tissue patterning. Correct rearrangement of cells between ommatidia is required to organize the ommatidial array across the eye field. This requires cell movement, cell death, changes to cell-cell adhesion, signaling and fate specification. METHODOLOGY:We describe a method to quantitatively assess mis-patterning of the Drosophila pupal eye and objectively calculate a 'mis-patterning score' characteristic of a specific genotype. This entails step-by-step scoring of specific traits observed in pupal eyes dissected 40-42 hours after puparium formation and subsequent statistical analysis of this data. SIGNIFICANCE:This method provides an unbiased quantitative score of mis-patterning severity that can be used to compare the impact of different genetic mutations on tissue patterning

    Functional exploration of colorectal cancer genomes using Drosophila

    Get PDF
    The multigenic nature of human tumours presents a fundamental challenge for cancer drug discovery. Here we use Drosophila to generate 32 multigenic models of colon cancer using patient data from The Cancer Genome Atlas. These models recapitulate key features of human cancer, often as emergent properties of multigenic combinations. Multigenic models such as ras p53 pten apc exhibit emergent resistance to a panel of cancer-relevant drugs. Exploring one drug in detail, we identify a mechanism of resistance for the PI3K pathway inhibitor BEZ235. We use this data to identify a combinatorial therapy that circumvents this resistance through a two-step process of emergent pathway dependence and sensitivity we term ‘induced dependence’. This approach is effective in cultured human tumour cells, xenografts and mouse models of colorectal cancer. These data demonstrate how multigenic animal models that reference cancer genomes can provide an effective approach for developing novel targeted therapies
    corecore