548 research outputs found
Recommended from our members
Improved RELAP4 BWR jet pump model
A RELAP4 Boiling Water Reactor (BWR) jet pump model development effort is being conducted to develop a new RELAP4 BWR jet pump model from test data. Results from the Jet Pump Test and Model Development Program conducted at the Idaho National Engineering Laboratory (INEL) are being used. The overall program consisted of three phases, subscale testing, model development, and model evaluation. This paper includes a program description, a model description, and a model evaluation
Supergravity Inflation on the Brane
We study N=1 Supergravity inflation in the context of the braneworld
scenario. Particular attention is paid to the problem of the onset of inflation
at sub-Planckian field values and the ensued inflationary observables. We find
that the so-called -problem encountered in supergravity inspired
inflationary models can be solved in the context of the braneworld scenario,
for some range of the parameters involved. Furthermore, we obtain an upper
bound on the scale of the fifth dimension, M_5 \lsim 10^{-3} M_P, in case the
inflationary potential is quadratic in the inflaton field, . If the
inflationary potential is cubic in , consistency with observational data
requires that .Comment: 6 pages, 1 figure, to appear in Phys. Rev.
A new approach to constructing models of electron diffusion by EMIC waves in the radiation belts
Electromagnetic Ion Cyclotron (EMIC) waves play an important role in relativistic electron losses in the radiation belts through diffusion via resonant waveâparticle interactions. We present a new approach for calculating bounce and driftâaveraged EMIC electron diffusion coefficients. We calculate bounceâaveraged diffusion coefficients, using quasiâlinear theory, for each individual CRRES EMIC wave observation using fitted wave properties, the plasma density and the background magnetic field. These calculations are then combined into bounceâaveraged diffusion coefficients. The resulting coefficients therefore capture the combined effects of individual spectra and plasma properties as opposed to previous approaches that use average spectral and plasma properties, resulting in diffusion over a wider range of energies and pitchâangles. These calculations, and their role in radiation belt simulations, are then compared against existing diffusion models. The new diffusion coefficients are found to significantly improve the agreement between the calculated decay of relativistic electrons and Van Allen Probes data
N=1 Supergravity Chaotic Inflation in the Braneworld Scenario
We study a N=1 Supergravity chaotic inflationary model, in the context of the
braneworld scenario. It is shown that successful inflation and reheating
consistent with phenomenological constraints can be achieved via the new terms
in the Friedmann equation arising from brane physics. Interestingly, the model
satisfies observational bounds with sub-Planckian field values, implying that
chaotic inflation on the brane is free from the well known difficulties
associated with the presence of higher order non-renormalizable terms in the
superpotential. A bound on the mass scale of the fifth dimension, M_5 \gsim
1.3 \times 10^{-6} M_P, is obtained from the requirement that the reheating
temperature be higher than the temperature of the electroweak phase transition.Comment: 5 pages, 1 Table, Revtex
Broken-Symmetry States in Quantum Hall Superlattices
We argue that broken-symmetry states with either spatially diagonal or
spatially off-diagonal order are likely in the quantum Hall regime, for clean
multiple quantum well (MQW) systems with small layer separations. We find that
for MQW systems, unlike bilayers, charge order tends to be favored over
spontaneous interlayer coherence. We estimate the size of the interlayer
tunneling amplitude needed to stabilize superlattice Bloch minibands by
comparing the variational energies of interlayer-coherent superlattice miniband
states with those of states with charge order and states with no broken
symmetries. We predict that when coherent miniband ground states are stable,
strong interlayer electronic correlations will strongly enhance the
growth-direction tunneling conductance and promote the possibility of Bloch
oscillations.Comment: 9 pages LaTeX, 4 figures EPS, to be published in PR
WMAP and Supergravity Inflationary Models
We study a class of N=1 Supergravity inflationary models in which the
evolution of the inflaton dynamics is controlled by a single power in the
inflaton field at the point where the observed density fluctuations are
produced, in the context of the braneworld scenario, in light of WMAP results.
In particular, we find that the bounds on the spectral index and its running
constrain the parameter space both for models where the inflationary potential
is dominated by a quadratic term and by a cubic term in the inflaton field. We
also find that is required for the quadratic model whereas
for the cubic model. Moreover, we have determined an upper bound
on the five-dimensional Planck scale, M_5 \lsim 0.019 M, for the quadratic
model. On the other hand, a running spectral index with on large scales
and on small scales is not possible in either case.Comment: 7 pages, 4 eps figures, references corrected, version to appear in
Phys. Rev.
Transnational partisanship: idea and practice
That parties might successfully organize transnationally is an idea often met with scepticism. This article argues that while certain favourable conditions are indeed absent in the transnational domain, this implies not that partisanship is impossible but that it is likely to be marked by certain traits. Specifically, it will tend to be episodic, structured as a low-density network and delocalized in its ideational content. These tendencies affect the normative expectations one can attach to it. Transnational partisanship should be valued as a transitional phenomenon, e.g. as a pathway to transnational democracy, more than as a desirable thing in itself
Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV
We present a search for the production of neutral Higgs bosons decaying into
tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The
data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by
the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the
95% C.L. on the product of production cross section and branching ratio for a
scalar resonance decaying into tautau pairs, and we then interpret these limits
as limits on the production of Higgs bosons in the minimal supersymmetric
standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL
Measurement of the photon-jet production differential cross section in collisions at \sqrt{s}=1.96~\TeV
We present measurements of the differential cross section dsigma/dpT_gamma
for the inclusive production of a photon in association with a b-quark jet for
photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for
photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is
the photon transverse momentum. The b-quark jets are required to have pT>15 GeV
and rapidity |y_jet| < 1.5. The results are based on data corresponding to an
integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the
Fermilab Tevatron Collider at sqrt(s)=1.96 TeV. The measured cross
sections are compared with next-to-leading order perturbative QCD calculations
using different sets of parton distribution functions as well as to predictions
based on the kT-factorization QCD approach, and those from the Sherpa and
Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.
Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wgamma production in pp-bar collisions at sqrt{s}=1.96 TeV
We present final searches of the anomalous gammaWW and ZWW trilinear gauge
boson couplings from WW and WZ production using lepton plus dijet final states
and a combination with results from Wgamma, WW, and WZ production with leptonic
final states. The analyzed data correspond to up to 8.6/fb of integrated
luminosity collected by the D0 detector in pp-bar collisions at sqrt{s}=1.96
TeV. We set the most stringent limits at a hadron collider to date assuming two
different relations between the anomalous coupling parameters
Delta\kappa_\gamma, lambda, and Delta g_1^Z for a cutoff energy scale Lambda=2
TeV. The combined 68% C.L. limits are -0.057<Delta\kappa_\gamma<0.154,
-0.015<lambda<0.028, and -0.008<Delta g_1^Z<0.054 for the LEP parameterization,
and -0.007<Delta\kappa<0.081 and -0.017<lambda<0.028 for the equal couplings
parameterization. We also present the most stringent limits of the W boson
magnetic dipole and electric quadrupole moments.Comment: 10 pages, 5 figures, submitted to PL
- âŠ