32 research outputs found

    Clusters of Basic Amino Acids Contribute to RNA Binding and Nucleolar Localization of Ribosomal Protein L22

    Get PDF
    The ribosomal protein L22 is a component of the 60S eukaryotic ribosomal subunit. As an RNA-binding protein, it has been shown to interact with both cellular and viral RNAs including 28S rRNA and the Epstein-Barr virus encoded RNA, EBER-1. L22 is localized to the cell nucleus where it accumulates in nucleoli. Although previous studies demonstrated that a specific amino acid sequence is required for nucleolar localization, the RNA-binding domain has not been identified. Here, we investigated the hypothesis that the nucleolar accumulation of L22 is linked to its ability to bind RNA. To address this hypothesis, mutated L22 proteins were generated to assess the contribution of specific amino acids to RNA binding and protein localization. Using RNA-protein binding assays, we demonstrate that basic amino acids 80–93 are required for high affinity binding of 28S rRNA and EBER-1 by L22. Fluorescence localization studies using GFP-tagged mutated L22 proteins further reveal that basic amino acids 80–93 are critical for nucleolar accumulation and for incorporation into ribosomes. Our data support the growing consensus that the nucleolar accumulation of ribosomal proteins may not be mediated by a defined localization signal, but rather by specific interaction with established nucleolar components such as rRNA

    Functional Characterization of the HuR:CD83 mRNA Interaction

    Get PDF
    Maturation of dendritic cells (DC) is characterized by expression of CD83, a surface protein that appears to be necessary for the effective activation of naïve T-cells and T-helper cells by DC. Lately it was shown that CD83 expression is regulated on the posttranscriptional level by interaction of the shuttle protein HuR with a novel posttranscriptional regulatory RNA element (PRE), which is located in the coding region of the CD83 transcript. Interestingly, this interaction commits the CD83 mRNA to efficient nuclear export via the CRM1 pathway. To date, however, the structural basis of this interaction, which potentially involves three distinct RNA recognition motifs (RRM1–3) in HuR and a complex three-pronged RNA stem-loop element in CD83 mRNA, has not been investigated in detail. In the present work we analyzed this interaction in vitro and in vivo using various HuR- and CD83 mRNA mutants. We are able to demonstrate that both, RRM1 and RRM2 are crucial for binding, whereas RRM3 as well as the HuR hinge region contributed only marginally to this protein∶RNA interaction. Furthermore, mutation of uridine rich patches within the PRE did not disturb HuR:CD83 mRNA complex formation while, in contrast, the deletion of specific PRE subfragments from the CD83 mRNA prevented HuR binding in vitro and in vivo. Interestingly, the observed inhibition of HuR binding to CD83 mRNA does not lead to a nuclear trapping of the transcript but rather redirected this transcript from the CRM1- towards the NXF1/TAP-specific nuclear export pathway. Thus, the presence of a functional PRE permits nucleocytoplasmic trafficking of the CD83 transcript via the CRM1 pathway

    Characterization of phosphorylation sites in the cytoplasmic domain of the 300 kDa mannose-6-phosphate receptor.

    No full text
    The human 300 kDa mannose-6-phosphate receptor (MPR 300) is phosphorylated in vivo at serine residues of its cytoplasmic domain. Two-dimensional separation can resolve tryptic phosphopeptides into four major species. To identify the kinases involved in MPR 300 phosphorylation and the phosphorylation sites the entire coding sequence of the cytoplasmic tail was expressed in Escherichia coli. The isolated cytoplasmic domain was used as a substrate for four purified serine/threonine kinases [casein kinase II (CK II), protein kinase A (PKA), protein kinase C and Ca2+/calmodulin kinase]. All kinases phosphorylate the cytoplasmic tail exclusively on serine residues. Inhibition studies using synthetic peptides, partial sequencing of isolated tryptic phosphopeptides and co-migration with tryptic phosphopeptides from MPR 300 labelled in vivo showed that (i) PKA phosphorylates the cytoplasmic MPR 300 domain at Ser20 and at a non-identified site, neither of which are phosphorylated in vivo, and that (ii) the two sites phosphorylated by CK II in vivo and in vitro are Ser82 and Ser157. The results indicate that the human MPR 300 is a physiological substrate of either CK II or a related kinase which may play a role in the transport function of MPR 300 and/or interaction with other proteins

    The Adenovirus Type 5 E1B-55K Oncoprotein Actively Shuttles in Virus-Infected Cells, Whereas Transport of E4orf6 Is Mediated by a CRM1-Independent Mechanism

    No full text
    The E1B-55K and E4orf6 proteins of adenovirus type 5 are involved in viral mRNA export. Here we demonstrate that adenovirus infection does not inhibit the function of the E1B-55K nuclear export signal and that E1B-55K also shuttles in infected cells. Even during virus infection, E1B-55K was exported by the leptomycin B-sensitive CRM1 pathway, whereas E4orf6 transport appeared to be mediated by an alternative mechanism. Our results strengthen the potential role of E1B-55K as the “driving force” for adenoviral late mRNA export

    The unique hypusine modification of eIF5A promotes islet β cell inflammation and dysfunction in mice

    No full text
    In both type 1 and type 2 diabetes, pancreatic islet dysfunction results in part from cytokine-mediated inflammation. The ubiquitous eukaryotic translation initiation factor 5A (eIF5A), which is the only protein to contain the amino acid hypusine, contributes to the production of proinflammatory cytokines. We therefore investigated whether eIF5A participates in the inflammatory cascade leading to islet dysfunction during the development of diabetes. As described herein, we found that eIF5A regulates iNOS levels and that eIF5A depletion as well as the inhibition of hypusination protects against glucose intolerance in inflammatory mouse models of diabetes. We observed that following knockdown of eIF5A expression, mice were resistant to β cell loss and the development of hyperglycemia in the low-dose streptozotocin model of diabetes. The depletion of eIF5A led to impaired translation of iNOS-encoding mRNA within the islet. A role for the hypusine residue of eIF5A in islet inflammatory responses was suggested by the observation that inhibition of hypusine synthesis reduced translation of iNOS-encoding mRNA in rodent β cells and human islets and protected mice against the development of glucose intolerance the low-dose streptozotocin model of diabetes. Further analysis revealed that hypusine is required in part for nuclear export of iNOS-encoding mRNA, a process that involved the export protein exportin1. These observations identify the hypusine modification of eIF5A as a potential therapeutic target for preserving islet function under inflammatory conditions
    corecore