4,376 research outputs found
The Effect of Ru substitution for Ni on the superconductivity in MgCNi3-xRux
The superconductor MgCNi3 has been chemically doped by partial substitution
of Ru for Ni in the solid solution MgCNi3-xRux for 0<x<0.5. Magnetic and
specific heat measurements show that the Sommerfeld parameter (gamma_exp) and
TC decrease immediately on Ru substitution, but that a TC above 2K is
maintained even for a relatively large decrease in gamma_exp. Ferromagnetism is
not observed to develop through Ru substitution, and the normal state magnetic
susceptibility is suppressed.Comment: 18 pages, 13 figure
Constraints on the total coupling strength to bosons in iron based superconductors
At present, there is still no consistent interpretation of the normal and
superconducting properties of Fe-based superconductors (FeSCs). The strength of
the el-el interaction and the role of correlation effects are under debate.
Here, we examine several common materials and illustrate various problems and
concepts that are generic for all FeSCs. Based on empirical observations and
qualitative insight from density functional theory, we show that the
superconducting and low-energy thermodynamic properties of the FeSCs can be
described semi-quantitively within multiband Eliashberg theory. We account for
an important high-energy mass renormalization phenomenologically,and in
agreement with constraints provided by thermodynamic, optical, and
angle-resolved photoemission data. When seen in this way, all FeSCs with
40~K studied so far are found to belong to an {\it
intermediate} coupling regime. This finding is in contrast to the strong
coupling scenarios proposed in the early period of the FeSC history.We also
discuss several related issues, including the role of band shifts as measured
by the positions of van Hove singularities, and the nature of a recently
suggested quantum critical point in the strongly hole-doped systems
AFeAs (A = K, Rb, Cs). Using high-precision full relativistic GGA-band
structure calculations, we arrive at a somewhat milder mass renormalization in
comparison with previous studies. From the calculated mass anisotropies of all
Fermi surface sheets, only the -pocket near the corner of the BZ
is compatible with the experimentally observed anisotropy of the upper critical
field. pointing to its dominant role in the superconductivity of these three
compounds.Comment: 19 pages, 9 figure
Tensor charges of light baryons in the Infinite Momentum Frame
We have used the Chiral-Quark Soliton Model formulated in the Infinite
Momentum Frame to investigate the octet, decuplet and antidecuplet tensor
charges up to the 5Q level. Using flavor SU(3) symmetry we have obtained for
the proton and in fair agreement previous
model estimations. The 5Q allowed us to estimate also the strange contribution
to the proton tensor charge . All those values have been
obtained at the model scale Q^2=0.36 GeV^2.Comment: 16 pages, 5 figure
Orbital-spin order and the origin of structural distortion in MgTiO
We analyze electronic, magnetic, and structural properties of the spinel
compound MgTiO using the local density approximation+U method. We show
how MgTiO undergoes to a canted orbital-spin ordered state, where
charge, spin and orbital degrees of freedom are frozen in a geometrically
frustrated network by electron interactions. In our picture orbital order
stabilize the magnetic ground state and controls the degree of structural
distortions. The latter is dynamically derived from the cubic structure in the
correlated LDA+U potential. Our ground-state theory provides a consistent
picture for the dimerized phase of MgTiO, and might be applicable to
frustrated materials in general.Comment: 6 pages, 6 figure
Frustrated square lattice with spatial anisotropy: crystal structure and magnetic properties of PbZnVO(PO4)2
Crystal structure and magnetic properties of the layered vanadium phosphate
PbZnVO(PO4)2 are studied using x-ray powder diffraction, magnetization and
specific heat measurements, as well as band structure calculations. The
compound resembles AA'VO(PO4)2 vanadium phosphates and fits to the extended
frustrated square lattice model with the couplings J(1), J(1)' between
nearest-neighbors and J(2), J(2)' between next-nearest-neighbors. The
temperature dependence of the magnetization yields estimates of averaged
nearest-neighbor and next-nearest-neighbor couplings, J(1) ~ -5.2 K and J(2) ~
10.0 K, respectively. The effective frustration ratio alpha=J(2)/J(1) amounts
to -1.9 and suggests columnar antiferromagnetic ordering in PbZnVO(PO4)2.
Specific heat data support the estimates of J(1) and J(2) and indicate a likely
magnetic ordering transition at 3.9 K. However, the averaged couplings
underestimate the saturation field, thus pointing to the spatial anisotropy of
the nearest-neighbor interactions. Band structure calculations confirm the
identification of ferromagnetic J(1), J(1)' and antiferromagnetic J(2), J(2)'
in PbZnVO(PO4)2 and yield J(1)'-J(1) ~ 1.1 K in excellent agreement with the
experimental value of 1.1 K, deduced from the difference between the expected
and experimentally measured saturation fields. Based on the comparison of
layered vanadium phosphates with different metal cations, we show that a
moderate spatial anisotropy of the frustrated square lattice has minor
influence on the thermodynamic properties of the model. We discuss relevant
geometrical parameters, controlling the exchange interactions in these
compounds, and propose a new route towards strongly frustrated square lattice
materials.Comment: 14 pages, 9 figures, 5 table
Dilepton asymmetries at factories in search of transitions
In order to detect the possible presence of
amplitudes in neutral meson decays, we consider the measurement of decay
time asymmetries involving like-sign dilepton events at the factories.Comment: 5 pages, latex, no fig
Spin ladder compound Pb(0.55)Cd(0.45)V(2)O(5): synthesis and investigation
The complex oxide Pb(0.55)Cd(0.45)V(2)O(5) was synthesized and investigated
by means of X-ray powder diffraction, electron diffraction, magnetic
susceptibility measurements and band structure calculations. Its structure is
similar to that of MV(2)O(5) compounds (M = Na, Ca) giving rise to a spin
system of coupled S=1/2 two-leg ladders. Magnetic susceptibility measurements
reveal a spin gap-like behavior with \Delta ~ 270 K and a spin singlet ground
state. Band structure calculations suggest Pb(0.55)Cd(0.45)V(2)O(5) to be a
system of weakly coupled dimers in perfect agreement with the experimental
data. Pb(0.55)Cd(0.45)V(2)O(5) provides an example of the modification of the
spin system in layered vanadium oxides by cation substitution. Simple
correlations between the cation size, geometrical parameters and exchange
integrals for the MV(2)O(5)-type oxides are established and discussed.Comment: 8 pages, 7 figure
Interplay of atomic displacements in the quantum magnet (CuCl)LaNb2O7
We report on the crystal structure of the quantum magnet (CuCl)LaNb2O7 that
was controversially described with respect to its structural organization and
magnetic behavior. Using high-resolution synchrotron powder x-ray diffraction,
electron diffraction, transmission electron microscopy, and band structure
calculations, we solve the room-temperature structure of this compound
[alpha-(CuCl)LaNb2O7] and find two high-temperature polymorphs. The
gamma-(CuCl)LaNb2O7 phase, stable above 640K, is tetragonal with a(sub) = 3.889
A, c(sub) = 11.738 A, and the space group P4/mmm. In the gamma-(CuCl)LaNb2O7
structure, the Cu and Cl atoms are randomly displaced from the special
positions along the {100} directions. The beta-phase [a(sub) x 2a(sub) x
c(sub), space group Pbmm] and the alpha-phase [2a(sub) x 2a(sub) x c(sub),
space group Pbam] are stable between 640 K and 500 K and below 500 K,
respectively. The structural changes at 500 K and 640 K are identified as
order-disorder phase transitions. The displacement of the Cl atoms is frozen
upon the gamma --> beta transformation, while a cooperative tilting of the NbO6
octahedra in the alpha-phase further eliminates the disorder of the Cu atoms.
The low-temperature alpha-(CuCl)LaNb2O7 structure thus combines the two types
of the atomic displacements that interfere due to the bonding between the Cu
atoms and the apical oxygens of the NbO6 octahedra. The precise structural
information resolves the controversy between the previous computation-based
models and provides the long-sought input for understanding the magnetic
properties of (CuCl)LaNb2O7.Comment: 12 pages, 10 figures, 5 tables; crystallographic information (cif
files) include
CaCu2(SeO3)2Cl2: spin-1/2 Heisenberg chain compound with complex frustrated interchain couplings
We report the crystal structure, magnetization measurements, and
band-structure calculations for the spin-1/2 quantum magnet CaCu2(SeO3)2Cl2.
The magnetic behavior of this compound is well reproduced by a uniform spin-1/2
chain model with the nearest-neighbor exchange of about 133 K. Due to the
peculiar crystal structure, spin chains run in the direction almost
perpendicular to the structural chains. We find an exotic regime of frustrated
interchain couplings owing to two inequivalent exchanges of 10 K each. Peculiar
superexchange paths grant an opportunity to investigate bond-randomness effects
under partial Cl-Br substitution.Comment: Extended version: 9 pages, 7 figures, 4 table
- …