183 research outputs found

    Cost Estimation of Structural Work for Residential Building with Seismic Design Consideration

    Get PDF
    The Sumatra-Andaman earthquakes had triggered local earthquakes in Malaysia by reactivation of ancient inactive faults. Previously on 5th June 2015, Ranau, a region located in Sabah, Malaysia, had experienced a moderate earthquake of Mw6.1. The structural failures occurred because all existing buildings only designed for gravity load without any seismic provision. Recent research work exhibits the seismic designs’ impact on the cost of material and its parameters that impact the cost. There are two types reinforced concrete residential buildings called Type 1 and Type 2 for two storey and four storey which had been used as models. This research applied four seismicity levels to the reference peak ground acceleration value, αgR = 0.07g, 0.10g, 0.13g & 0.16g, and two soil types: Soil Types B and D. The result shows that for two storey reinforced concrete residential buildings on soil types B and D, seismic design increases structural work costs, which is around 0.62% to 1.31% and 0.61% to 2.16%, respectively, for Type 1 model compared to non-seismic design. Besides, model Type 2, the increment is around 0.24% to 1.22% and 0.20% to 1.71%, respectively. Otherwise, for reinforced concrete residential building with four storey on soil types B and D, the result shows that seismic design tends to have a higher structural work’s cost around 0.41% to 2.48% and 0.98% to 11.23%, respectively, for Type 1 model. Besides, for model Type 2 the increment is around 1.80% to 2.05% and 2.34% to 8.53%, respectively, compared to nonseismic design

    Cost Estimation of Structural Work for Residential Building with Seismic Design Consideration

    Get PDF
    The Sumatra-Andaman earthquakes had triggered local earthquakes in Malaysia by reactivation of ancient inactive faults. Previously on 5th June 2015, Ranau, a region located in Sabah, Malaysia, had experienced a moderate earthquake of Mw6.1. The structural failures occurred because all existing buildings only designed for gravity load without any seismic provision. Recent research work exhibits the seismic designs’ impact on the cost of material and its parameters that impact the cost. There are two types reinforced concrete residential buildings called Type 1 and Type 2 for two storey and four storey which had been used as models. This research applied four seismicity levels to the reference peak ground acceleration value, αgR = 0.07g, 0.10g, 0.13g & 0.16g, and two soil types: Soil Types B and D. The result shows that for two storey reinforced concrete residential buildings on soil types B and D, seismic design increases structural work costs, which is around 0.62% to 1.31% and 0.61% to 2.16%, respectively, for Type 1 model compared to non-seismic design. Besides, model Type 2, the increment is around 0.24% to 1.22% and 0.20% to 1.71%, respectively. Otherwise, for reinforced concrete residential building with four storey on soil types B and D, the result shows that seismic design tends to have a higher structural work’s cost around 0.41% to 2.48% and 0.98% to 11.23%, respectively, for Type 1 model. Besides, for model Type 2 the increment is around 1.80% to 2.05% and 2.34% to 8.53%, respectively, compared to nonseismic design

    Influence of yarn parameters on cotton/kenaf blended yarn characteristics

    Get PDF
    Spinning kenaf fibers into yarns is challenging due to the stiffness and lack of cohesiveness of the fibers. Alkali treatment is known to remove hemicellulose, wax, and breaks down lignin, reducing stiffness of kenaf fiber and improving its spinnability. Kenaf fibers were treated at percentages of 4% and 6% and blended with cotton fibers at blend ratios of 40:60 and 50:50 prior to a ring spinning process to produce a double ply yarn of 70 tex. Yarn were twisted at three sets of twist. The responses were measured in terms of carding waste percentages and yarn strength. The results showed that the optimized yarn structural parameter is kenaf fiber treated at 6% and with a kenaf/cotton 40/60 blending ratio based on its tenacity and minimum carding waste. ANOVA shows that there is a good interaction effect between NaOH and kenaf/cotton ratio, and NaOH concentration and twist

    Review of EEG and ERP studies of extraversion personality for baseline and cognitive tasks

    Get PDF
    According to psychological studies, the most fundamental personality is the extraversion personality. Most studies looking at differences between extroverts and introverts are pen and paper based studies. However, in a few studies, electrophysiological signals were involved. In this paper, we reviewed studies examining extraversion personality using electroencephalography (EEG) and event-related potentials (ERP). It was found that some of the EEG studies claimed that extroverts and introverts can be differentiated using baseline EEG, while some others claimed otherwise. Conflicting findings were also observed in the ERP studies; higher/lower P300 amplitude in extroverts compared to that of introverts in visual stimuli tasks. These various findings are probably due to differences in their experimental protocols, sample size, or age of subjects. Other possible reasons include no consideration given on the main feature of extraversion and the studies only focused on EEG power spectral analysis. We are thus suggesting for future investigations to involve the main feature such as sociability and/or to incorporate more EEG features in the analysis to produce more robust and reliable results. This review constitutes a guidance for research on brain-related conditions of extroverts and introverts and shall be useful in many areas

    Hollow-core photonic crystal fiber refractive index sensor based on modal interference

    Get PDF
    A refractive index sensor based modal interference in hollow core photonic crystal fiber (HCPCF) is proposed and demonstrated. The sensor is realized by splicing both ends of a HCPCF section to single mode fiber (SMF). At both splicing points, the HCPCF air holes are fully collapsed by the arc discharge. The collapsed regions excite and recombine core and cladding modes which formed modal interference for sensing purpose. The HCPCF sensor is tested in sugar solution and the response is measured from the wavelength shift in the interference spectra. The achieved sensitivity and resolution are 36.184 nm/RIU and 5.53-10-4 RIU, respectively, in refractive index range between 1.3330 and 1.3775. Result also shows that the sensor has a small temperature sensitivity of 19 pm/°C in the range of 35.5°C to 60.5 °C. The propos sensor potentially can be applied in biomedical, biological and chemical applications

    A panel data approach towards the effectiveness of energy policies in fostering the implementation of solar photovoltaic technology: Empirical evidence for Asia-Pacific

    Get PDF
    Today, the growing Asia-Pacific population causes a dramatic growth in energy supply to meet energy demand. The rapid rise in energy demand is causing concern in the region. Thus, the present study scrutinizes the effect of energy policy involvement in steering-up renewable energy development by empirically assessing the role of policy instruments in encouraging residen-tial-scale and commercial-scale photovoltaic (PV) systems. The analysis is performed using a fixed effects estimator on a selected range of policy approaches (market-pull policies and tax incentives) and a technology-push policy (capital grants) in selected Asia-Pacific countries between 1998 and 2015. The return on investment is estimated to measure the incentives of feed-in tariff (FIT) tariff policies for both residential-scale and commercial-scale PV systems. This study has shown the im-portance of a strategic combination between technology-push and market-pull policies as comple-mentary to adopting technology and increasing renewable energy utilization for solar PV systems on a residential scale. Investigations into the effectiveness of regulatory support policies for solar PV systems indicate that energy policies are necessary to facilitate solar PV growth on a residential scale in the Asia-Pacific.info:eu-repo/semantics/publishedVersio

    The extraction of lignin from empty fruit bunch fiber via microwave-assisted deep-eutectic solvent heating

    Get PDF
    This work study about the extraction of lignin from Empty Fruit Bunch (EFB). It is a type of lignocellulosic waste produced during the palm oil extraction process. There are three main components of lignocellulosic, which is one of them is lignin. A deep eutectic solvent (DES) with microwave-assisted heating has been used as a process to extract the lignin from EFB and turn it into a value-product. This convenient method was started with the mixing of EFB and DES. After that, the mixture was heated via microwave synthesis reactor at different temperature and time parameters. The extracted lignin yield was dried and ground into a powder form. The highest lignin yield recovered is 30 % by the highest time and temperature. Interestingly, the purity of all lignin yields are above than 80 %. The highest yield of lignin was characterized. According to Fourier-Transform Infrared (FTIR) spectra, there was a significant functional group of phenolic and aliphatic hydroxyl in lignin. Besides, the methoxy group was also configured in lignin spectra. The presence of conjugated alkene also conveyed the characteristic of lignin. The FTIR spectra were intensified with 1H Nuclear Magnetic Resonance (NMR) spectra where there was a chemical shift in lignin and raw EFB which was designated to aliphatic and aromatic protons bonded to a carbon atom. Three regions of decomposition occur in the Thermogravimetric Analysis (TGA) spectra. The initial decompose temperature of lignin was lower compare to raw EFB. Next, second-stage lignin decomposed at 434.14 ℃ with weight loss of 36.21 %. Lastly, for the final stage, lignin decomposes at 552.54 ℃. Moreover, Differential Scanning Calorimetry (DSC) spectra demonstrate that the Tg value of lignin managed to be identified. However, the Tg value of raw EFB cannot be well defined. As for the characterization in residual fractions of EFB, the lowest crystallinity index (CrI) value of raw EFB has proven the presence of lignocellulosic in its structure. The residual fractions that reacted at higher temperatures have an inflated value of CrI as they contain abundant left out cellulose

    In vitro antiproliferative and antioxidant activities of the extracts of Muntingia calabura leaves.

    Get PDF
    The in vitro antiproliferative and antioxidant activities of the aqueous, chloroform and methanol extracts of Muntingia calabura leaves were determined in the present study. Assessed using the 3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay, the aqueous and methanol extracts of M. calabura inhibited the proliferation of MCF-7, HeLa, HT-29, HL-60 and K-562 cancer cells while the chloroform extract only inhibited the proliferation of MCF-7, HeLa, HL-60 and K-562 cancer cells. Interestingly, all extracts of M. calabura, which failed to inhibit the MDA-MB-231 cells proliferation, did not inhibit the proliferation of 3T3 (normal) cells, indicating its safety. All extracts (20, 100 and 500 μg/ml) were found to possess antioxidant activity when tested using the DPPH radical scavenging and superoxide scavenging assays with the methanol, followed by the aqueous and chloroform, extract exhibiting the highest antioxidant activity in both assays. The total phenolic content for the aqueous, methanol and chloroform extracts were 2970.4 ± 6.6, 1279.9 ± 6.1 and 2978.1 ± 4.3 mg/100 g gallic acid, respectively. In conclusion, the M. calabura leaves possess potential antiproliferative and antioxidant activities that could be attributed to its high content of phenolic compounds, and thus, needs to be further explored

    Parametric Study on the Compact G Shaped Monopole Antenna for 2.4 GHz and 5.2 GHz Application

    Get PDF
    Abstract—This paper describes the design of a compact printed microstrip G-shaped monopole antenna for wireless local area network (WLAN application). The antenna has G-shaped resonating element which is designed for the two resonance frequencies at 2.4GHz and 5.2GHz respectively, which are the operating bands for WLAN application. The antenna is constructed by a non-conductor backed G-shaped strip with a mircostrip feed line. The dual band performance can be easily achieved by finetuning the length of the resonant path. The antenna is designed and simulated by using Computer Simulation Technology (CST) Studio simulation software. The parametric study with five different ground lengths had been done using parametric sweep. The the measurement results will be compared and analyzed with the simulated antenna
    corecore