3 research outputs found

    High-Temperature Surface Oxide Growth Kinetics of Al–Si–Zr Bulk Alloys and Ribbons

    No full text
    A typical modification technique of the functional properties of Al–Si based alloys is the addition of some third element in trace level. In the present work, ternary Al–Si–Zr bulk and ribbon alloys have been prepared. The kinetics of high-temperature surface oxidation has been studied by thermogravimetric method. It was found that at the start of the experiment the chemical reaction velocity is rate-controlling while for longer times the (oxygen) diffusion is the rate-controlling process. Activation energy of the two stages of oxidation has been obtained. Additional studies such as thermochemical analysis, optical and electron microscopy, and microhardness tests have been done

    High-Temperature Surface Oxide Growth Kinetics of Al–Si–Zr Bulk Alloys and Ribbons

    No full text
    A typical modification technique of the functional properties of Al–Si based alloys is the addition of some third element in trace level. In the present work, ternary Al–Si–Zr bulk and ribbon alloys have been prepared. The kinetics of high-temperature surface oxidation has been studied by thermogravimetric method. It was found that at the start of the experiment the chemical reaction velocity is rate-controlling while for longer times the (oxygen) diffusion is the rate-controlling process. Activation energy of the two stages of oxidation has been obtained. Additional studies such as thermochemical analysis, optical and electron microscopy, and microhardness tests have been done

    Preparation and Preliminary Evaluation of Silver-Modified Anodic Alumina for Biomedical Applications

    No full text
    The present study reports a specific method for preparation of silver-modified anodic alumina substrates intended for biomaterial applications. Al2O3 coatings were obtained by anodization of technically pure aluminum alloy in sulfuric acid electrolyte. Silver deposition into the pores of the anodic structures was carried out employing in situ thermal reduction for different time periods. The obtained coatings were characterized using scanning electron microscopy (SEM), potentiodynamic scanning after 168 h in 3.5% NaCl solution and bioassays with human fibroblast and NIH/3T3 cell lines. The modified alumina substrates demonstrated better biocompatibility compared to the control anodic Al2O3 pads indicated by increased percent cell survival following in vitro culture with human and mouse fibroblasts. The Ag-deposition time did not affect considerably the biocompatibility of the investigated anodic layers. SEM analyses indicated that mouse NIH/3T3 cells and human fibroblasts adhere to the silver-coated alumina substrates retaining normal morphology and ability to form cell monolayer. Therefore, the present studies demonstrate that silver coating of anodic alumina substrates improves their biocompatibility and their eventual biomedical application
    corecore