3 research outputs found

    Isolation of Murine Myeloid Progenitor Populations by CD34/CD150 Surface Markers

    No full text
    Myeloid progenitors are intermediates between Hematopoietic Stem Cells (HSCs) and Myeloid effector progeny. In mouse bone marrow, they are part of the Lineage− cKit+ Sca1− (LK) compartment. To date, most researchers used CD34 and FcγR surface markers for the dissection of this compartment into various populations. Surprisingly, however, this approach does not provide distinct separation by fluorescence-activated cell sorting (FACS). In this study, we suggest using CD150 instead of FcγR. We re-analyzed published single-cell RNA-Seq data and found that CD34/CD150 provides better sub-populations separation, compared to the “classical” CD34/FcγR-based approach. We confirm our findings by independent FACS analysis. We demonstrate comparable differentiation potential of the newly-obtained LK sub-populations, like previous “classical” ones. Therefore, we suggest the CD34/CD150 gating strategy, utilizing commonly-used surface markers, as a robust and reproducible separation of the LK compartment into distinct sub-populations

    Rapid activation of hematopoietic stem cells

    No full text
    Abstract Adult hematopoietic stem cells (HSCs) in the bone marrow (BM) are quiescent. Following perturbations, such as blood loss or infection, HSCs may undergo activation. Surprisingly, little is known about the earliest stages of HSCs activation. We utilize surface markers of HSCs activation, CD69 and CD317, revealing a response as early as 2 h after stimulation. The dynamic expression of HSCs activation markers varies between viral-like (poly-Inosinic-poly-Cytidylic) or bacterial-like (Lipopolysaccharide) immune stimuli. We further quantify dose response, revealing a low threshold, and similar sensitivity of HSCs and progenitors in the BM. Finally, we find a positive correlation between the expression of surface activation markers and early exit from quiescence. Our data show that the response of adult stem cells to immune stimulation is rapid and sensitive, rapidly leading HSCs out of quiescence

    Overexpressed kinetochore genes are used by cancer cells as genome destabilizers and transformation catalysts

    No full text
    Cancer cells have an altered transcriptome, which contributes to their abnormal behavior. Many tumors have high levels of kinetochore genes, which play important roles in genome stability. This overexpression could be utilized to destabilize cancer cell genomes, however this has not been proven specifically. We investigated the link between kinetochore gene overexpression, chromosomal number variations (CNVs) and genomic instability.Data on RNA expression and CNV from 12 different cancer types were evaluated using information theory. In all cancer types, we looked at the relationship between RNA expression and CNVs. Kinetochore gene expression was found to be substantially linked with CNV levels. In all cancer types, with the exception of thyroid cancer, highly expressed kinetochore genes were enriched in the most dominant cancer-specific co-expression subnetworks characterizing the largest patient subgroups. Except for thyroid cancer, kinetochore inner protein CENPA was among the transcripts most strongly associated with CNV values in all cancer types studied, with significantly higher expression levels in patients with high CNVs than in patients with low CNVs. CENPA function was investigated further in cell models by transfecting genomically stable (HCT116) and unstable (MCF7 and HT29) cancer cell lines using CENPA overexpression vectors. This overexpression increased the number of abnormal cell divisions in the stable cancer cell line HCT116 and, to a lesser extent, in the unstable cell lines MCF7 and HT29. Overexpression improved anchorage-independent growth properties of all cell lines.Our findings suggest that overexpression of kinetochore genes in general, and CENPA in particular, can cause genomic instability and cancer progression
    corecore