408 research outputs found

    Rare top quark decays in extended models

    Get PDF
    Flavor changing neutral currents (FCNC) decays t to H + c, t to Z + c, and H to t + bar{c} are discussed in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions where FCNC decays may take place at tree-level and are only suppressed by the mixing between ordinary top and charm quarks, which is poorly constraint by current experimental values. The non-manifest case is also briefly discussed.Comment: Contributed talk given at the 10th Mexican Workhop on Particles and Fields, Morelia, Michoacan, Mexico, 7-12 Nov 200

    Electromagnetic properties of neutrinos

    Full text link
    A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.Comment: The talk presented by A.Studenikin at the International Conference on Topics in Astroparticle and Underground Physics, Rome (Italy), July 1-5, 200

    Oscillatons revisited

    Get PDF
    In this paper, we study some interesting properties of a spherically symmetric oscillating soliton star made of a real time-dependent scalar field which is called an oscillaton. The known final configuration of an oscillaton consists of a stationary stage in which the scalar field and the metric coefficients oscillate in time if the scalar potential is quadratic. The differential equations that arise in the simplest approximation, that of coherent scalar oscillations, are presented for a quadratic scalar potential. This allows us to take a closer look at the interesting properties of these oscillating objects. The leading terms of the solutions considering a quartic and a cosh scalar potentials are worked in the so called stationary limit procedure. This procedure reveals the form in which oscillatons and boson stars may be related and useful information about oscillatons is obtained from the known results of boson stars. Oscillatons could compete with boson stars as interesting astrophysical objects, since they would be predicted by scalar field dark matter models.Comment: 10 pages REVTeX, 10 eps figures. Updated files to match version published in Classical and Quantum Gravit

    On the thermal footsteps of Neutralino relic gases

    Full text link
    Current literature suggests that neutralinos are the dominant cold dark matter particle species. Assuming the microcanonical definition of entropy, we examine the local entropy per particle produced between the ``freeze out'' era to the present. An ``entropy consistency'' criterion emerges by comparing this entropy with the entropy per particle of actual galactic structures given in terms of dynamical halo variables. We apply this criterion to the cases when neutralinos are mosly b-inos and mostly higgsinos, in conjunction with the usual ``abundance'' criterion requiring that present neutralino relic density complies with 0.1 < \Omega_{\chic{\tilde\chi^0_1}} < 0.3 for h0.65h\simeq 0.65. The joint application of both criteria reveals that a better fitting occurs for the b-ino channels, hence the latter seem to be favoured over the higgsino channels. The suggested methodology can be applied to test other annihilation channels of the neutralino, as well as other particle candidates of thermal gases relics.Comment: LaTex AIP style, 8 pages including 1 figure. Final version to appear in Proceedings of the Mexican School of Astrophysics (EMA), Guanajuato, M\'exico, July 31 - August 7, 200

    Validity and reliability of the kiddie schedule for affective disorders and schizophrenia present and lifetime version DSM-5 (K-SADS-PL-5) Spanish version

    Get PDF
    Background: There are various language adaptations of the Schedule for Affective Disorders and Schizophrenia for School Age Children Present and Lifetime Version (K-SADS-PL). In order to comply with the changes in DSM classification, the Spanish edition of the interview was in need of update and evaluation. Methods: K-SADS-PL was adapted to correspond to DSM-5 categories. All clinicians received training, and a 90% agreement was reached. Patients and their parents or guardians were interviewed and videotaped, and the videos were exchanged between raters. Factor analysis was performed and inter-rater reliability was calculated only in the case of diagnoses in which there were more than five patients. Results: A total of 74 subjects were included. The Factor Analysis yielded six factors (Depressive, Stress Hyperarousal, Disruptive Behavioral, Irritable Explosive, Obsessive Repetitive and Encopresis), representing 72% of the variance. Kappa values for inter-rater agreement were larger than 0.7 for over half of the disorders. Conclusions: The factor structure of diagnoses, made with the instrument was found to correspond to the DSM-5 disorder organization. The instrument showed good construct validity and inter-rater reliability, which makes it a useful tool for clinical research studies in children and adolescents

    Electromagnetic Form Factors of a Massive Neutrino

    Full text link
    Electromagnetic form factors of a massive neutrino are studied in a minimally extended standard model in an arbitrary RξR_{\xi} gauge and taking into account the dependence on the masses of all interacting particles. The contribution from all Feynman diagrams to the charge, magnetic, and anapole form factors, in which the dependence on the masses of all particles as well as on gauge parameters is accounted for exactly, are obtained for the first time in explicit form. The asymptotic behavior of the magnetic form factor for large negative squares of the momentum of an external photon is analyzed and expression for the anapole moment of a massive neutrino is derived. The results are generalized to the case of mixing between various generations of the neutrino. Explicit expressions are obtained for the charge, magnetic, and electric dipole and anapole transition form factors as well as for the transition electric dipole moment.Comment: 16 pares with 5 figures in pdf forma

    Can dark matter be a Bose-Einstein condensate?

    Full text link
    We consider the possibility that the dark matter, which is required to explain the dynamics of the neutral hydrogen clouds at large distances from the galactic center, could be in the form of a Bose-Einstein condensate. To study the condensate we use the non-relativistic Gross-Pitaevskii equation. By introducing the Madelung representation of the wave function, we formulate the dynamics of the system in terms of the continuity equation and of the hydrodynamic Euler equations. Hence dark matter can be described as a non-relativistic, Newtonian Bose-Einstein gravitational condensate gas, whose density and pressure are related by a barotropic equation of state. In the case of a condensate with quartic non-linearity, the equation of state is polytropic with index n=1n=1. To test the validity of the model we fit the Newtonian tangential velocity equation of the model with a sample of rotation curves of low surface brightness and dwarf galaxies, respectively. We find a very good agreement between the theoretical rotation curves and the observational data for the low surface brightness galaxies. The deflection of photons passing through the dark matter halos is also analyzed, and the bending angle of light is computed. The bending angle obtained for the Bose-Einstein condensate is larger than that predicted by standard general relativistic and dark matter models. Therefore the study of the light deflection by galaxies and the gravitational lensing could discriminate between the Bose-Einstein condensate dark matter model and other dark matter models.Comment: 20 pages, 7 figures, accepted for publication in JCAP, references adde

    Hydrodynamics of galactic dark matter

    Get PDF
    We consider simple hydrodynamical models of galactic dark matter in which the galactic halo is a self-gravitating and self-interacting gas that dominates the dynamics of the galaxy. Modeling this halo as a sphericaly symmetric and static perfect fluid satisfying the field equations of General Relativity, visible barionic matter can be treated as ``test particles'' in the geometry of this field. We show that the assumption of an empirical ``universal rotation curve'' that fits a wide variety of galaxies is compatible, under suitable approximations, with state variables characteristic of a non-relativistic Maxwell-Boltzmann gas that becomes an isothermal sphere in the Newtonian limit. Consistency criteria lead to a minimal bound for particle masses in the range 30eVm60eV30 \hbox{eV} \leq m \leq 60 \hbox{eV} and to a constraint between the central temperature and the particles mass. The allowed mass range includes popular supersymmetric particle candidates, such as the neutralino, axino and gravitino, as well as lighter particles (mm\approx keV) proposed by numerical N-body simulations associated with self-interactive CDM and WDM structure formation theories.Comment: LaTeX article style, 16 pages including three figures. Final version to appear in Classical and Quantum Gravit
    corecore