2,542 research outputs found
Radio/X-ray Offsets of Large Scale Jets Caused by Synchrotron Time Lags
In the internal shock scenario, we argue that electrons in most kpc (or even
larger) scale jets can be accelerated to energies high enough to emit
synchrotron X-rays, if shocks exist on these scales. These high energy
electrons emit synchrotron radiation at high frequencies and cool as they
propagate downstream along the jet, emitting at progressively lower frequencies
and resulting in time lags and hence radio/X-ray (and optical/X-ray if the
optical knot is detectable) offsets at bright knots, with the centroids of
X-ray knots being closer to the core. Taking into account strong effects of jet
expansion, the behaviour of radio/X-ray and optical/X-ray offsets at bright
knots in M87, Cen A, 3C 66B, 3C 31, 3C 273, and PKS 1127-145 is consistent with
that of synchrotron time lags due to radiative losses. This suggests that the
large scale X-ray and optical jets in these sources are due to synchrotron
emission.Comment: 4 pages, Accepted for publication in ApJ Letter
Chandra Observations of the X-Ray Jet of 3C273
We report results from Chandra observations of the X-ray jet of 3C~273 during
the calibration phase in 2000 January. The zeroeth-order images and spectra
from two 40-ks exposures with the HETG and LETG+ACIS-S show a complex X-ray
structure. The brightest optical knots are detected and resolved in the 0.2-8
keV energy band. The X-ray morphology tracks well the optical. However, while
the X-ray brightness decreases along the jet, the outer parts of the jet tend
to be increasingly bright with increasing wavelength. The spectral energy
distributions of four selected regions can best be explained by inverse Compton
scattering of (beamed) cosmic microwave background photons. The model
parameters are compatible with equipartition and a moderate Doppler factor,
which is consistent with the one-sidedness of the jet. Alternative models
either imply implausible physical conditions and energetics (the synchrotron
self-Compton model) or are sufficiently ad hoc to be unconstrained by the
present data (synchrotron radiation from a spatially or temporally distinct
particle population).Comment: 3 figures; Figure 1 in color. Accepted for publication by ApJ Letter
Proton acceleration beyond 100 EeV by an oblique shock wave in the jet of 3C 273
We estimate the highest energy of proton diffusively accelerated by shock in
knot A1 of the jet in luminous nearby quasar 3C 273. Referring to the recent
polarization measurements using very long baseline interferometry (VLBI), we
consider the shock propagation across magnetic field lines, namely,
configuration of the oblique shock. For larger inclination of the field lines,
the effects of particle reflection at the shock front are more pronounced, to
significantly increase acceleration efficiency. The quasiperpendicular shock
turns out to be needed for safely achieving the proton acceleration to the
energy above 100 EeV (10^20 eV) in a parameter domain reflecting conceivable
energy restrictions.Comment: 12 pages, 2 figures, accepted for publication in Astrophysical
Journal Letter
Na2V3O7, a frustrated nanotubular system with spin-1/2 diamond rings
Following the recent discussion on the puzzling nature of the interactions in
the nanotubular system Na2V3O7, we present a detailed ab-initio microscopic
analysis of its electronic and magnetic properties. By means of a non-trivial
downfolding study we propose an effective model in terms of tubes of nine-site
rings with the geometry of a spin-diamond necklace with frustrated inter-ring
interactions. We show that this model provides a quantitative account of the
observed magnetic behavior.Comment: 5 pages, 5 figures. Phys. Rev. Lett. (in press
Large-Scale Regular Morphological Patterns in the Radio Jet of NGC 6251
We report on large-scale, regular morphological patterns found in the radio
jet of the nearby radio galaxy NGC 6251. Investigating morphological properties
of this radio jet from the nucleus to a radial distance of 300 arcsec
( 140 kpc) mapped at 1662 MHz and 4885 MHz by Perley, Bridle, &
Willis, we find three chains, each of which consists of five radio knots. We
also find that eight radio knots in the first two chains consist of three small
sub-knots (the triple-knotty substructures). We discuss the observational
properties of these regular morphological patterns.Comment: 8 figures, 15 pages, accepted for publication in A
Structure of the X-ray Emission from the Jet of 3C 273
We present images from five observations of the quasar 3C 273 with the
Chandra X-ray Observatory. The jet has at least four distinct features which
are not resolved in previous observations. The first knot in the jet (A1) is
very bright in X-rays. Its X-ray spectrum is well fitted with a power law with
alpha = 0.60 +/- 0.05. Combining this measurement with lower frequency data
shows that a pure synchrotron model can fit the spectrum of this knot from
1.647 GHz to 5 keV (over nine decades in energy) with alpha = 0.76 +/- 0.02,
similar to the X-ray spectral slope. Thus, we place a lower limit on the total
power radiated by this knot of 1.5e43 erg/s; substantially more power may be
emitted in the hard X-ray and gamma-ray bands.
Knot A2 is also detected and is somewhat blended with knot B1. Synchrotron
emission may also explain the X-ray emission but a spectral bend is required
near the optical band. For knots A1 and B1, the X-ray flux dominates the
emitted energy. For the remaining optical knots (C through H), localized X-ray
enhancements that might correspond to the optical features are not clearly
resolved. The position angle of the jet ridge line follows the optical shape
with distinct, aperiodic excursions of +/-1 deg from a median value of
-138.0deg. Finally, we find X-ray emission from the ``inner jet'' between 5 and
10" from the core.Comment: 10 pages, 5 figures; accepted for publication in the Astrophysical
Journal Letters. For the color image, see fig1.ps or
http://space.mit.edu/~hermanm/papers/3c273/fig1.jp
Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments
The study of the formation of molecular hydrogen on low temperature surfaces
is of interest both because it allows to explore elementary steps in the
heterogeneous catalysis of a simple molecule and because of the applications in
astrochemistry. Here we report results of experiments of molecular hydrogen
formation on amorphous silicate surfaces using temperature-programmed
desorption (TPD). In these experiments beams of H and D atoms are irradiated on
the surface of an amorphous silicate sample. The desorption rate of HD
molecules is monitored using a mass spectrometer during a subsequent TPD run.
The results are analyzed using rate equations and the activation energies of
the processes leading to molecular hydrogen formation are obtained from the TPD
data. We show that a model based on a single isotope provides the correct
results for the activation energies for diffusion and desorption of H atoms.
These results can thus be used to evaluate the formation rate of H_2 on dust
grains under the actual conditions present in interstellar clouds.Comment: 30 pages, 1 table, 6 figures. Published versio
The Optical-Near-IR Spectrum of the M87 Jet From HST Observations
We present 1998 HST observations of M87 which yield the first single-epoch
optical and radio-optical spectral index images of the jet at
resolution. We find , comparable to previous
measurements, and (),
slightly flatter than previous workers. Reasons for this discrepancy are
discussed. These observations reveal a large variety of spectral slopes. Bright
knots exhibit flatter spectra than interknot regions. The flattest spectra
(; comparable to or flatter than ) are
found in two inner jet knots (D-East and HST-1) which contain the fastest
superluminal components. In knots A, B and C, and are
essentially anti-correlated. Near the flux maxima of knots HST-1 and F, changes
in lag changes in , but in knots D and E, the opposite
relationship is observed. This is further evidence that radio and optical
emissions in the M87 jet come from substantially different physical regions.
The delays observed in the inner jet are consistent with localized particle
acceleration, with for optically emitting electrons in
knots HST-1 and F, and for optically emitting electrons
in knots D and E. Synchrotron models yield \nu_B \gsim 10^{16} Hz for knots
D, A and B, and somewhat lower values, Hz, in
other regions. If X-ray emissions from knots A, B and D are co-spatial with
optical and radio emission, we can strongly rule out the ``continuous
injection'' model. Because of the short lifetimes of X-ray synchrotron emitting
particles, the X-ray emission likely fills volumes much smaller than the
optical emission regions.Comment: Text 17 pages, 3 Tables, 11 figures, accepted by Ap
Synthetic Observations of Simulated Radio Galaxies I: Radio and X-ray Analysis
We present an extensive synthetic observational analysis of numerically-
simulated radio galaxies designed to explore the effectiveness of conventional
observational analyses at recovering physical source properties. These are the
first numerical simulations with sufficient physical detail to allow such a
study. The present paper focuses on extraction of magnetic field properties
from nonthermal intensity information. Synchrotron and inverse-Compton
intensities provided meaningful information about distributions and strengths
of magnetic fields, although considerable care was called for. Correlations
between radio and X-ray surface brightness correctly revealed useful dynamical
relationships between particles and fields. Magnetic field strength estimates
derived from the ratio of X-ray to radio intensity were mostly within about a
factor of two of the RMS field strength along a given line of sight. When
emissions along a given line of sight were dominated by regions close to the
minimum energy/equipartition condition, the field strengths derived from the
standard power-law-spectrum minimum energy calculation were also reasonably
close to actual field strengths, except when spectral aging was evident.
Otherwise, biases in the minimum- energy magnetic field estimation mirrored
actual differences from equipartition. The ratio of the inverse-Compton
magnetic field to the minimum-energy magnetic field provided a rough measure of
the actual total energy in particles and fields in most instances, within an
order of magnitude. This may provide a practical limit to the accuracy with
which one may be able to establish the internal energy density or pressure of
optically thin synchrotron sources.Comment: 43 pages, 14 figures; accepted for publication in ApJ, v601 n2
February 1, 200
New Chandra observations of the jet in 3C273. I. Softer X-ray than radio spectra and the X-ray emission mechanism
The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray
emission whose size and brightness allow a detailed study of the emission
processes acting in it. We present deep Chandra observations of this jet and
analyse the spectral properties of the jet emission from radio through X-rays.
We find that the X-ray spectra are significantly softer than the radio spectra
in all regions of the bright part of the jet except for the first bright "knot
A", ruling out a model in which the X-ray emission from the entire jet arises
from beamed inverse-Compton scattering of cosmic microwave background photons
in a single-zone jet flow. Within two-zone jet models, we find that a
synchrotron origin for the jet's X-rays requires fewer additional assumptions
than an inverse-Compton model, especially if velocity shear leads to efficient
particle acceleration in jet flows.Comment: 11 pages, 5 figures, emulateapj. Accepted by Ap
- âŠ