1,792 research outputs found

    Cu-based metalorganic systems: an ab initio study of the electronic structure

    Full text link
    Within a first principles framework, we study the electronic structure of the recently synthesized polymeric coordination compound Cu(II)-2,5-bis(pyrazol-1-yl)-1,4-dihydroxybenzene (CuCCP), which has been suggested to be a good realization of a Heisenberg spin-1/2 chain with antiferromagnetic coupling. By using a combination of classical with ab initio quantum mechanical methods, we design on the computer reliable modified structures of CuCCP aimed at studying effects of Cu-Cu coupling strength variations on this spin-1/2 system. For this purpose, we performed two types of modifications on CuCCP. In one case, we replaced H in the linker by i) an electron donating group (NH2) and ii) an electron withdrawing group (CN), while the other modification consisted in adding H2O and NH3 molecules in the structure which change the local coordination of the Cu(II) ions. With the NMTO-downfolding method we provide a quantitative analysis of the modified electronic structure and the nature of the Cu-Cu interaction paths in these new structures and discuss its implications for the underlying microscopic model.Comment: 18 pages, 11 figures, final versio

    Polarized proton beam acceleration with a single Siberian Snake in each RHIC ring

    Get PDF
    N/

    Cold AGS Snake Optimization by Modeling

    Get PDF
    N/

    Beam Polarization Distribution for the Relativistic Heavy Ion Collider

    Get PDF
    N/

    First principles electronic structure of spinel LiCr2O4: A possible half-metal?

    Full text link
    We have employed first-principles electronic structure calculations to examine the hypothetical (but plausible) oxide spinel, LiCr2O4 with the d^{2.5} electronic configuration. The cell (cubic) and internal (oxygen position) structural parameters have been obtained for this compound through structural relaxation in the first-principles framework. Within the one-electron band picture, we find that LiCr2O4 is magnetic, and a candidate half-metal. The electronic structure is substantially different from the closely related and well known rutile half-metal CrO2. In particular, we find a smaller conduction band width in the spinel compound, perhaps as a result of the distinct topology of the spinel crystal structure, and the reduced oxidation state. The magnetism and half-metallicity of LiCr2O4 has been mapped in the parameter space of its cubic crystal structure. Comparisons with superconducting LiTi2O4 (d^{0.5}), heavy-fermion LiV2O4 (d^{1.5}) and charge-ordering LiMn2O4 (d^{3.5}) suggest the effectiveness of a nearly-rigid band picture involving simple shifts of the position of E_F in these very different materials. Comparisons are also made with the electronic structure of ZnV2O4 (d^{2}), a correlated insulator that undergoes a structural and antiferromagnetic phase transition.Comment: 9 pages, 7 Figures, version as published in PR
    • …
    corecore