12,551 research outputs found
Radial excitations of heavy-light mesons from QCD sum rules
QCD sum rules are commonly used to predict the characteristics of
ground-state hadrons. We demonstrate that two-point sum rules for the decay
constants of charmed () and bottom ()
mesons can also be modified to estimate the decay constants of the first radial
excitations, and , respectively,
provided the masses of these resonances are used as an input. For the radially
excited charmed mesons we use available experimental data, whereas the masses
of analogous bottom mesons are estimated from the heavy-quark limit. The decay
constants predicted for the radial excitations of heavy-light pseudoscalar and
vector mesons are systematically smaller than those of the ground states and we
comment on the possible origin of this difference. Our results can be used in
the sum rule calculations of heavy-to-light form factors and in the
factorization approximations for nonleptonic -meson decays where the decay
constants of charmed mesons enter as input parameters.Comment: 16 pages, a few comments added, version to appear in EPJ
MEXIT: Maximal un-coupling times for stochastic processes
Classical coupling constructions arrange for copies of the \emph{same} Markov
process started at two \emph{different} initial states to become equal as soon
as possible. In this paper, we consider an alternative coupling framework in
which one seeks to arrange for two \emph{different} Markov (or other
stochastic) processes to remain equal for as long as possible, when started in
the \emph{same} state. We refer to this "un-coupling" or "maximal agreement"
construction as \emph{MEXIT}, standing for "maximal exit". After highlighting
the importance of un-coupling arguments in a few key statistical and
probabilistic settings, we develop an explicit \MEXIT construction for
stochastic processes in discrete time with countable state-space. This
construction is generalized to random processes on general state-space running
in continuous time, and then exemplified by discussion of \MEXIT for Brownian
motions with two different constant drifts.Comment: 28 page
Knowledge based and interactive control for the Superfluid Helium On-orbit Transfer Project
NASA's Superfluid Helium On-Orbit Transfer (SHOOT) project is a Shuttle-based experiment designed to acquire data on the properties of superfluid helium in micro-gravity. Aft Flight Deck Computer Software for the SHOOT experiment is comprised of several monitoring programs which give the astronaut crew visibility into SHOOT systems and a rule based system which will provide process control, diagnosis and error recovery for a helium transfer without ground intervention. Given present Shuttle manifests, this software will become the first expert system to be used in space. The SHOOT Command and Monitoring System (CMS) software will provide a near real time highly interactive interface for the SHOOT principal investigator to control the experiment and to analyze and display its telemetry. The CMS software is targeted for all phases of the SHOOT project: hardware development, pre-flight pad servicing, in-flight operations, and post-flight data analysis
Thermal inactivation of Byssochlamys nivea in pineapple nectar combined with preliminary high pressure treatments
Byssochlamys nivea is a thermal resistant filamentous fungi and potential micotoxin producer. Recent studies have verified the presence of ascospores of such microorganism in samples of pineapple nectars. Although the majority of filamentous fungi have limited heat resistance and are easily destroyed by heat, Byssochlamys nivea ascospores have shown high thermal resistance. The aim of this work was to evaluate the application of linear and Weibull models on thermal inactivation (70, 80 and 90ºC) of Byssochlamys nivea ascospores in pineapple nectar after pretreatment with high pressure (550MPa or 650MPa during 15min). Following the treatments, survival curves were built up for each processing temperature and adjusted for both models. It was observed that survival curves at 90°C after high pressure pretreatment at 550 MPa/15 min did not fit well to linear and Weibull models. For all the other treatments, the Weibull model presented a better fit. At 90ºC without pressure treatment, the Weibull model also showed a better adjustment, having a larger R2 and a smaller RMSE. Regarding the process effectiveness, a 5-log reduction (t5), as recommended for pasteurization, was only achieved for Byssochlamys nivea ascospores presented in pineapple nectar at 90ºC/10.7 min with previous high pressure treatment of 650 MPa for 15 min. Considering the high intensity and energy demanding process with possibly product damage, other preventive and alternative treatments are being investigated
Adaptação de método de extração e caracterização das proteínas extraídas de presunto submetido à alta pressão.
bitstream/CTAA-2009-09/9974/1/ct96-2006.pd
A selected history of expectation bias in physics
The beliefs of physicists can bias their results towards their expectations
in a number of ways. We survey a variety of historical cases of expectation
bias in observations, experiments, and calculations.Comment: 6 pages, 2 figure
Over-expressing the C3 photosynthesis cycle enzyme Sedoheptulose-1-7 Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2fumigation (FACE)
Abstract
Background
Biochemical models predict that photosynthesis in C3 plants is most frequently limited by the slower of two processes, the maximum capacity of the enzyme Rubisco to carboxylate RuBP (Vc,max), or the regeneration of RuBP via electron transport (J). At current atmospheric [CO2] levels Rubisco is not saturated; consequently, elevating [CO2] increases the velocity of carboxylation and inhibits the competing oxygenation reaction which is also catalyzed by Rubisco. In the future, leaf photosynthesis (A) should be increasingly limited by RuBP regeneration, as [CO2] is predicted to exceed 550 ppm by 2050. The C3 cycle enzyme sedoheptulose-1,7 bisphosphatase (SBPase, EC 3.1.3.17) has been shown to exert strong metabolic control over RuBP regeneration at light saturation.
Results
We tested the hypothesis that tobacco transformed to overexpressing SBPase will exhibit greater stimulation of A than wild type (WT) tobacco when grown under field conditions at elevated [CO2] (585 ppm) under fully open air fumigation. Growth under elevated [CO2] stimulated instantaneous A and the diurnal photosynthetic integral (A') more in transformants than WT. There was evidence of photosynthetic acclimation to elevated [CO2] via downregulation of Vc,max in both WT and transformants. Nevertheless, greater carbon assimilation and electron transport rates (J and Jmax) for transformants led to greater yield increases than WT at elevated [CO2] compared to ambient grown plants.
Conclusion
These results provide proof of concept that increasing content and activity of a single photosynthesis enzyme can enhance carbon assimilation and yield of C3 crops grown at [CO2] expected by the middle of the 21st century.
</jats:sec
- …