1,459 research outputs found

    Equation of state for the 2+1 dimensional Gross-Neveu model at order 1/N

    Get PDF
    We calculate the equation of state of the Gross-Neveu model in 2+1 dimensions at order 1/N, where N is the number of fermion species. We make use of a general formula valid for four-fermion theories, previously applied to the model in 1+1 dimensions. We consider both the discrete and continuous symmetry versions of the model. We show that the pion-like excitations give the dominant contribution at low temperatures. The range of validity for such pion dominance is analyzed. The complete analysis from low to high temperatures also shows that in the critical region the role of composite states is relevant, even for quite large N, and that the free-component behaviour at high T starts at about twice the mean field critical temperature.Comment: 19 pages, RevTeX, 10 figures.p

    Nature of 45 degree vortex lattice reorientation in tetragonal superconductors

    Full text link
    The transformation of the vortex lattice in a tetragonal superconductor which consists of its 45 degree reorientation relative to the crystal axes is studied using the nonlocal London model. It is shown that the reorientation occurs as two successive second order (continuous) phase transitions. The transition magnetic fields are calculated for a range of parameters relevant for borocarbide superconductors in which the reorientation has been observed

    θ\theta Effects in Chern-Simons QED2+1{\rm QED}_{2+1} with a Four-Fermi Interaction

    Full text link
    We investigate the effects of the Chern-Simons coupling on the high energy behavior in the (2+1)(2+1)-dimensional Chern-Simons QED with a four-Fermi interaction. Using the 1/N1/N expansion we discuss the Chern-Simons effects on the critical four-Fermi coupling at O(1/N)O(1/N) and the β\beta function around it. High-energy behavior of Green's functions is also discussed. By explicit calculation, we find that the radiative correction to the Chern-Simons coupling vanishes at O(1/N)O(1/N) in the broken phase of the dynamical parity symmetry. We argue that no radiative corrections to the Chern-Simons term arise at higher orders in the 1/N1/N expansion.Comment: 13 pages, 6 figures not included, LaTeX, SNUTP 92-9

    The Dynamical Behaviors in (2+1)-Dimensional Gross-Neveu Model with a Thirring Interaction

    Full text link
    We analyze (2+1)-dimensional Gross-Neveu model with a Thirring interaction, where a vector-vector type four-fermi interaction is on equal terms with a scalar-scalar type one. The Dyson-Schwinger equation for fermion self-energy function is constructed up to next-to-leading order in 1/N expansion. We determine the critical surface which is the boundary between a broken phase and an unbroken one in (αc, βc, Nc\alpha_c,~ \beta_c,~ N_c) space. It is observed that the critical behavior is mainly controlled by Gross-Neveu coupling αc\alpha_c and the region of the broken phase is separated into two parts by the line αc=αc(=8π2)\alpha_c=\alpha_c^*(=\frac{8}{\pi^2}). The mass function is strongly dependent upon the flavor number N for α>αc\alpha > \alpha_c^*, while weakly for ααc\alpha \alpha_c^*, the critical flavor number NcN_c increases as Thirring coupling β\beta decreases. By driving the CJT effective potential, we show that the broken phase is energetically preferred to the symmetric one. We discuss the gauge dependence of the mass function and the ultra-violet property of the composite operators.Comment: 19 pages, LaTex, 6 ps figure files(uuencoded in seperate file

    Thermal fluctuations and disorder effects in vortex lattices

    Full text link
    We calculate using loop expansion the effect of fluctuations on the structure function and magnetization of the vortex lattice and compare it with existing MC results. In addition to renormalization of the height of the Bragg peaks of the structure function, there appears a characteristic saddle shape ''halos'' around the peaks. The effect of disorder on magnetization is also calculated. All the infrared divergencies related to soft shear cancel.Comment: 10 pages, revtex file, one figur

    Current Algebra in Three Dimensions

    Full text link
    We study a three dimensional analogue of the Wess--Zumino--Witten model, which describes the Goldstone bosons of three dimensional Quantum Chromodynamics. The topologically non--trivial term of the action can also be viewed as a nonlinear realization of Chern--Simons form. We obtain the current algebra of this model by canonical methods. This is a three dimensional generalization of the Kac--Moody algebra.Comment: 11 pages, UR-1266, ER40685-72

    Dynamical Symmetry Breaking in Models with the Yukawa Interaction

    Full text link
    We discuss models with a massless fermion and a self-interacting massive scalar field with the Yukawa interaction. The chiral condensate and the fermion mass are calculated analytically. It is shown that the models have a phase transition as a function of the squared mass of the scalar field.Comment: 7 pages, no figures, in Eqs. (7) and (11) one coefficient was change

    Why the lowest Landau level approximation works in strongly type II superconductors

    Full text link
    Higher than the lowest Landau level contributions to magnetization and specific heat of superconductors are calculated using Ginzburg - Landau equations approach. Corrections to the excitation spectrum around solution of these equations (treated perturbatively) are found. Due to symmetries of the problem leading to numerous cancellations the range of validity of the LLL approximation in mean field is much wider then a naive range and extends all the way down to H=Hc2(T)/13H = {H_{c2}(T)}/13. Moreover the contribution of higher Landau levels is significantly smaller compared to LLL than expected naively. We show that like the LLL part the lattice excitation spectrum at small quasimomenta is softer than that of usual acoustic phonons. This enhanses the effect of fluctuations. The mean field calculation extends to third order, while the fluctuation contribution due to HLL is to one loop. This complements the earlier calculation of the LLL part to two loop order.Comment: 20 pages, Latex file, three figure

    O(1/N_f) Corrections to the Thirring Model in 2<d<4

    Full text link
    The Thirring model, that is, a relativistic field theory of fermions with a contact interaction between vector currents, is studied for dimensionalities 2<d<4 using the 1/N_f expansion, where N_f is the number of fermion species. The model is found to have no ultraviolet divergences at leading order provided a regularization respecting current conservation is used. Explicit O(1/N_f) corrections are computed, and the model shown to be renormalizable at this order in the massless limit; renormalizability appears to hold to all orders due to a special case of Weinberg's theorem. This implies there is a universal amplitude for four particle scattering in the asymptotic regime. Comparisons are made with both the Gross-Neveu model and QED.Comment: 22 pages in plain TeX, with 7 figs included using psfig.tex (Minor conceptual changes - algebra unaffected

    Classicalization and Unitarity

    Full text link
    We point out that the scenario for UV completion by "classicalization", proposed recently is in fact Wilsonian in the classical Wilsonian sense. It corresponds to the situation when a field theory has a nontrivial UV fixed point governed by a higher dimensional operator. Provided the kinetic term is a relevant operator around this point the theory will flow in the IR to the free scalar theory. Physically, "classicalization", if it can be realized, would correspond to a situation when the fluctuations of the field operator in the UV are smaller than in the IR. As a result there exists a clear tension between the "classicalization" scenario and constraints imposed by unitarity on a quantum field theory, making the existence of classicalizing unitary theories questionable.Comment: Some clarifications and refs added. Accepted as a JHEP publication; 12 page
    corecore