24 research outputs found

    Modification of fluid lipid and mobile protein fractions of reticulocyte plasma membranes affects agonist-stimulated adenylate cyclase. Application of the percolation theory

    Get PDF
    AbstractThe technique of fluorescence recovery after photobleaching was used to measure the lateral mobility of membrane integral proteins in reticulocyte plasma membranes which were treated to modify the ‘fluid’ lipid or immobilized protein fractions, hence increasing the relative prevalence of obstacles to protein lateral motion. This was achieved by either: (1) treating the plasma membranes with phospholipase A2 followed by extraction of the hydrolysis products using fatty-acid-free bovine serum albumin, resulting in a decrease in the membrane ‘fluid’ lipid portion; or (2) preincubating the plasma membranes with polylysines, resulting in plasma membrane protein aggregation and immobilization. As the prevalence of obstacles to lateral motion increased in plasma membranes through the treatments described above, the mobility of the membrane integral proteins diminished. Experimental results for the dependence of protein mobility on the prevalence of obstacles to lateral motion were compared to theoretical data in order to verify the applicability of the percolation theory to reticulocyte plasma membranes. The influence of a decrease in the ‘fluid’ lipid and an increase in the immobilized membrane protein fractions upon the hormone-stimulated adenylate cyclase activity has been studied as well. As the ‘solid’ lipid and immobilized membrane protein fractions decreased, both the hormone-stimulated adenylate cyclase activity and the fraction of β-adrenergic receptors with high affinity to hormone diminished. It was shown that this correlation can be caused by a decrease in membrane fraction accessible to the movement of the interacting proteins of the adenylate cyclase complex. Hormonal stimulation of adenylate cyclase is discussed in terms of the percolation theory

    Modular nanotransporters: a multipurpose in vivo working platform for targeted drug delivery

    Get PDF
    Tatiana A Slastnikova1,2, Andrey A Rosenkranz1,2, Pavel V Gulak1, Raymond M Schiffelers3, Tatiana N Lupanova1,4, Yuri V Khramtsov1, Michael R Zalutsky5, Alexander S Sobolev1,21Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Moscow, Russia; 2Department of Biophysics, Biological Faculty, Moscow State University, Vorobyevy Gory, Moscow, Russia; 3Laboratory for Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, the Netherlands; 4Department of Bioengineering, Biological Faculty, Moscow State University, Vorobyevy Gory, Moscow, Russia; 5Department of Radiology, Duke University Medical Center, Durham, NC, USABackground: Modular nanotransporters (MNT) are recombinant multifunctional polypeptides created to exploit a cascade of cellular processes, initiated with membrane receptor recognition to deliver selective short-range and highly cytotoxic therapeutics to the cell nucleus. This research was designed for in vivo concept testing for this drug delivery platform using two modular nanotransporters, one targeted to the α-melanocyte-stimulating hormone (αMSH) receptor overexpressed on melanoma cells and the other to the epidermal growth factor (EGF) receptor overexpressed on several cancers, including glioblastoma, and head-and-neck and breast carcinoma cells.Methods: In vivo targeting of the modular nanotransporter was determined by immunofluorescence confocal laser scanning microscopy and by accumulation of 125I-labeled modular nanotransporters. The in vivo therapeutic effects of the modular nanotransporters were assessed by photodynamic therapy studies, given that the cytotoxicity of photosensitizers is critically dependent on their delivery to the cell nucleus.Results: Immunohistochemical analyses of tumor and neighboring normal tissues of mice injected with multifunctional nanotransporters demonstrated preferential uptake in tumor tissue, particularly in cell nuclei. With 125I-labeled MNT{αMSH}, optimal tumor:muscle and tumor:skin ratios of 8:1 and 9.8:1, respectively, were observed 3 hours after injection in B16-F1 melanoma-bearing mice. Treatment with bacteriochlorin p-MNT{αMSH} yielded 89%–98% tumor growth inhibition and a two-fold increase in survival for mice with B16-F1 and Cloudman S91 melanomas. Likewise, treatment of A431 human epidermoid carcinoma-bearing mice with chlorin e6- MNT{EGF} resulted in 94% tumor growth inhibition compared with free chlorin e6, with 75% of animals surviving at 3 months compared with 0% and 20% for untreated and free chlorin e6-treated groups, respectively.Conclusion: The multifunctional nanotransporter approach provides a new in vivo functional platform for drug development that could, in principle, be applicable to any combination of cell surface receptor and agent (photosensitizers, oligonucleotides, radionuclides) requiring nuclear delivery to achieve maximum effectiveness.Keywords: drug delivery, nanobiotechnology, nanomedicine, cancer therapy, photosensitizers, multifunctional nanotransporte

    Antitumor Activity of Auger Electron Emitter 111In Delivered by Modular Nanotransporter for Treatment of Bladder Cancer With EGFR Overexpression

    Get PDF
    Gamma-ray emitting 111In, which is extensively used for imaging, is also a source of short-range Auger electrons (AE). While exhibiting negligible effect outside cells, these AE become highly toxic near DNA within the cell nucleus. Therefore, these radionuclides can be used as a therapeutic anticancer agent if delivered precisely into the nuclei of tumor target cells. Modular nanotransporters (MNTs) designed to provide receptor-targeted delivery of short-range therapeutic cargoes into the nuclei of target cells are perspective candidates for specific intracellular delivery of AE emitters. The objective of this study was to evaluate the in vitro and in vivo efficacy of 111In attached MNTs to kill human bladder cancer cells overexpressing epidermal growth factor receptor (EGFR). The cytotoxicity of 111In delivered by the EGFR-targeted MNT (111In-MNT) was greatly enhanced on EJ-, HT-1376-, and 5637-expressing EGFR bladder cancer cell lines compared with 111In non-targeted control. In vivo microSPECT/CT imaging and antitumor efficacy studies revealed prolonged intratumoral retention of 111In-MNT with t½ = 4.1 ± 0.5 days as well as significant dose-dependent tumor growth delay (up to 90% growth inhibition) after local infusion of 111In-MNT in EJ xenograft-bearing mice

    Comparative analysis of RNA sequencing methods for degraded or low-input samples

    Get PDF
    available in PMC 2014 January 01RNA-seq is an effective method for studying the transcriptome, but it can be difficult to apply to scarce or degraded RNA from fixed clinical samples, rare cell populations or cadavers. Recent studies have proposed several methods for RNA-seq of low-quality and/or low-quantity samples, but the relative merits of these methods have not been systematically analyzed. Here we compare five such methods using metrics relevant to transcriptome annotation, transcript discovery and gene expression. Using a single human RNA sample, we constructed and sequenced ten libraries with these methods and compared them against two control libraries. We found that the RNase H method performed best for chemically fragmented, low-quality RNA, and we confirmed this through analysis of actual degraded samples. RNase H can even effectively replace oligo(dT)-based methods for standard RNA-seq. SMART and NuGEN had distinct strengths for measuring low-quantity RNA. Our analysis allows biologists to select the most suitable methods and provides a benchmark for future method development.National Institutes of Health (U.S.) (Pioneer Award DP1-OD003958-01)National Human Genome Research Institute (U.S.) (NHGRI) 1P01HG005062-01)National Human Genome Research Institute (U.S.) (NHGRI Center of Excellence in Genome Science Award 1P50HG006193-01)Howard Hughes Medical Institute (Investigator)Merkin Family Foundation for Stem Cell ResearchBroad Institute of MIT and Harvard (Klarman Cell Observatory)National Human Genome Research Institute (U.S.) (NHGRI grant HG03067)Fonds voor Wetenschappelijk Onderzoek--Vlaandere

    Therapeutic properties of a vector carrying the HSV thymidine kinase and GM-CSF genes and delivered as a complex with a cationic copolymer

    Get PDF

    Recombinant modular transporters for cell-specific nuclear delivery of locally acting drugs enhance photosensitizer activity

    No full text
    The search for new pharmaceuticals that are specific for diseased rather than normal cells in the case of cancer and viral disease has raised interest in locally acting drugs that act over short distances within the cell and for which different cell compartments have distinct sensitivities. Thus, photosensitizers (PSs) used in anti-cancer therapy should ideally be transported to the most sensitive subcellular compartments in order for their action to be most pronounced. Here we describe the design, production, and characterization of the effects of bacterially expressed modular recombinant transporters for PSs comprising 1) alpha-melanocyte-stimulating hormone as an internalizable, cell-specific ligand; 2) an optimized nuclear localization sequence of the SV40 large T-antigen; 3) an Escherichia coli hemoglobin-like protein as a carrier; and 4) an endosomolytic amphipathic polypeptide, the translocation domain of diphtheria toxin. These modular transporters delivered PSs into the nuclei, the most vulnerable sites for the action of PSs, of murine melanoma cells, but not non-MSH receptor-overexpressing cells, to result in cytotoxic effects several orders of magnitude greater than those of nonmodified PSs. The modular fusion proteins described here for the first time, capable of cell-specific targeting to particular subcellular compartments to increase drug efficacy, represent new pharmaceuticals with general application
    corecore