38 research outputs found

    The Contributions of Vestibular Evoked Myogenic Potentials and Acoustic Vestibular Stimulation to Our Understanding of the Vestibular System

    Get PDF
    Vestibular-evoked myogenic potentials (VEMPs) are short-latency muscle reflexes typically recorded from the neck or eye muscles with surface electrodes. They are used clinically to assess otolith function, but are also interesting as they can provide information about the vestibular system and its activation by sound and vibration. Since the introduction of VEMPs more than 25 years ago, VEMPs have inspired animal and human research on the effects of acoustic vestibular stimulation on the vestibular organs, their projections and the postural muscles involved in vestibular reflexes. Using a combination of recording techniques, including single motor unit recordings, VEMP studies have enhanced our understanding of the excitability changes underlying the sound-evoked vestibulo-collic and vestibulo-ocular reflexes. Studies in patients with diseases of the vestibular system, such as superior canal dehiscence and Meniere's disease, have shown how acoustic vestibular stimulation is affected by physical changes in the vestibule, and how sound-evoked reflexes can detect these changes and their resolution in clinical contexts. This review outlines the advances in our understanding of the vestibular system that have occurred following the renewed interest in sound and vibration as a result of the VEMP

    μVEMP: A Portable Interface to Record Vestibular Evoked Myogenic Potentials (VEMPs) With a Smart Phone or Tablet

    No full text
    Background: Cervical VEMPs and ocular VEMPs are tests for evaluating otolith function in clinical practice. We developed a simple, portable and affordable device to record VEMP responses on patients, named μVEMP. Our aim was to validate and field test the new μVEMP device.Methods: We recorded cervical VEMPs and ocular VEMPs in response to bone conducted vibration using taps tendon hammer to the forehead (Fz) and to air conducted sounds using clicks. We simultaneously recorded VEMP responses (same subject, same electrode, same stimuli) in three healthy volunteers (2 females, age range: 29–57 years) with the μVEMP device and with a standard research grade commercial (CED) system used in clinics. We also used the μVEMP device to record VEMP responses from six patients (6 females, age mean±SD: 50.3 ± 20.8 years) with classical peripheral audio-vestibular diseases (unilateral vestibular neuritis, unilateral neurectomy, bilateral vestibular loss, unilateral superior canal dehiscence, unilateral otosclerosis).Results: The first part of this paper compared the devices using simultaneous recordings. The average of the concordance correlation coefficient was rc = 0.997 ± 0.003 showing a strong similarity between the measures. VEMP responses recorded with the μVEMP device on patients with audio-vestibular diseases were similar to those typically found in the literature.Conclusions: We developed, validated and field tested a new device to record ocular and cervical VEMPs in response to sound and vibration.This new device is portable (powered by a phone or tablet) with pocket-size dimensions (105 × 66 × 27 mm) and light weight (150 g). Although further studies and normative data are required, our μVEMP device is simpler (easier to use) and potentially more accessible than standard, commercially available equipment

    Ethanol consumption impairs vestibulo-ocular reflex function measured by the video head impulse test and dynamic visual acuity

    Get PDF
    Ethanol affects many parts of the nervous system, from the periphery to higher cognitive functions. Due to the established effects of ethanol on vestibular and oculomotor function, we wished to examine its effect on two new tests of the vestibulo-ocular reflex (VOR): the video head impulse test (vHIT) and dynamic visual acuity (DVA). We tested eight healthy subjects with no history of vestibular disease after consumption of standardized drinks of 40% ethanol. We used a repeated measures design to track vestibular function over multiple rounds of ethanol consumption up to a maximum breath alcohol concentration (BrAC) of 1.38‰. All tests were normal at baseline. VOR gain measured by vHIT decreased 25% by the highest BrAC level tested in each subject. Catch-up saccades were negligible at baseline and increased in number and size with increasing ethanol consumption (from 0.13° to 1.43° cumulative amplitude per trial). DVA scores increased by 86% indicating a deterioration of acuity, while static visual acuity (SVA) remained unchanged. Ethanol consumption systematically impaired the VOR evoked by high-acceleration head impulses and led to a functional loss of visual acuity during head movement.NHMR

    New perspectives on vestibular evoked myogenic potentials

    No full text

    Vestibular-Evoked Myogenic Potentials in Bilateral Vestibulopathy

    No full text
    Bilateral vestibulopathy (BVP) is a chronic condition in which patients have a reduction or absence of vestibular function in both ears. BVP is characterized by bilateral reduction of horizontal canal responses; however, there is increasing evidence that otolith function can also be affected. Cervical and ocular vestibular-evoked myogenic potentials (cVEMPs/oVEMPs) are relatively new tests of otolith function that can be used to test the saccule and utricle of both ears independently. Studies to date show that cVEMPs and oVEMPs are often small or absent in BVP but are in the normal range in a significant proportion of patients. The variability in otolith function is partly due to the heterogeneous nature of BVP but is also due to false negative and positive responses that occur because of the large range of normal VEMP amplitudes. Due to their variability, VEMPs are not part of the diagnosis of BVP; however, they are helpful complementary tests that can provide information about the extent of disease within the labyrinth. This article is a review of the use of VEMPs in BVP, summarizing the available data on VEMP abnormalities in patients and discussing the limitations of VEMPs in diagnosing bilateral loss of otolith function

    cVEMP morphology changes with recording electrode position, but single motor unit activity remains constant

    Full text link
    Cervical vestibular evoked myogenic potentials (cVEMPs) recorded over the lower quarter of the sternocleidomastoid (SCM) muscle in normal subjects may have opposite polarity to those recorded over the midpoint. It has thus been suggested that vestibular projections to the lower part of SCM might be excitatory rather than inhibitory. We tested the hypothesis that the SCM muscle receives both inhibitory and excitatory vestibular inputs. We recorded cVEMPs in 10 normal subjects with surface electrodes placed at multiple sites along the anterior (sternal) component of the SCM muscle. We compared several reference sites: sternum, ipsilateral and contralateral earlobes, and contralateral wrist. In five subjects, single motor unit responses were recorded at the upper, middle, and lower parts of the SCM muscle using concentric needle electrodes. The surface cVEMP had the typical positive-negative polarity at the midpoint of the SCM muscle. In all subjects, as the recording electrode was moved toward each insertion point, p13 amplitude became smaller and p13 latency increased, then the polarity inverted to a negative-positive waveform (n1-p1). Changing the reference site did not affect reflex polarity. There was a significant short-latency change in activity in 61/63 single motor units, and in each case this was a decrease or gap in firing, indicating an inhibitory reflex. Single motor unit recordings showed that the reflex was inhibitory along the entire SCM muscle. The cVEMP surface waveform inversion near the mastoid and sternal insertion points likely reflects volume conduction of the potential occurring with increasing distance from the motor point
    corecore