16 research outputs found
Impact of the slit geometry on the performance of wire-grid polarisers
Wire-grid polarisers are versatile and scalable components which can be
engineered to achieve small sizes and extremely high extinction ratios. Yet the
measured performances are always significantly below the predicted values
obtained from numerical simulations. Here we report on a detailed comparison
between theoretical and experimental performances. We show that the discrepancy
can be explained by the true shape of the plasmonic structures. Taking into
account the fabrication details, a new optimisation model enables us to achieve
excellent agreement with the observed response and to re-optimise the grating
parameters to ensure experimental extinction ratios well above 1,000 at 850 nm.Comment: 8 pages, 6 figure
Experiments with an Entangled System of a Single Atom and a Single Photon
Verschränkung ist eines der grundlegendsten Merkmale in der Quantenmechanik. Sie beschreibt einen nicht separierbaren Zustand von zwei oder mehr quantenmechanischen Objekten und besitzt z. T. Eigenschaften, welche dem klassischen physikalischen Sinn widersprechen. Während das Konzept der Verschränkung, welches bereits von E. Schrödinger in 1935 eingeführt wurde, allgemein gut verstanden ist, stellen die Erzeugung und Analyse von verschränkten Zuständen noch immer eine erhebliche Herausforderung dar. Insbesondere die Verschränkung von verschiedenartigen Objekten
wie Atomen und Photonen wurde erst vor kurzem erreicht und ist Gegenstand aktiver Forschung.
Diese Arbeit berichtet über Experimente mit Verschränkung zwischen einem einzelnen Rubidium Atom und einem einzelnen Photon. Das Atom wird in einer optischen Falle gehalten, wo es exakt lokalisiert ist und sein interner Zustand mit Laserpulsen manipuliert werden kann. Zur Erzeugung der Verschränkung wird das Atom optisch in ein kurzlebiges
höheres Niveau angeregt, von wo aus es unter Ausstrahlung eines einzelnen Photons zurück in den Grundzustand fällt. Die Polarisation des emittierten Photons ist verschränkt mit dem Spin des Atoms. In dieser Arbeit wurden Methoden entwickelt, die Präparation und Analyse des Atom-Photon Zustandes mit hoher Genauigkeit erlauben. Um den Zustand für weitere Anwendungen verfügbar zu machen, mussten mehrere Probleme gelöst werden. Erstens ist der interne Zustand des Atoms empfindlich gegenüber äußeren Störungen, insbesondere durch magnetische und elektromagnetische Felder. Um den Zustand des Atoms während des Experiments (welcher auf der Skala von Mikrosekunden abläuft) zu erhalten, wurde u. a. ein System zur aktiven Stabilisierung der Magnetfelder entwickelt. Zweitens muss das vom Atom emittierte Photon zu einem anderen Ort übertragen werden, dabei soll sein Zustand erhalten bleiben. Für diesen Zweck wurde eine faseroptische
Strecke von 300 Metern Länge aufgebaut. Wegen der mechanisch bedingten Doppelbrechung in der Faser, ändert sich der Polarisationszustand des Photons während der Übertragung. Deshalb wurde ein System zur aktiven Kompensation der Doppelbrechung entworfen und installiert. Um die Zuverlässigkeit der optischen Verbindung zu bestätigen, wurde das vom Atom emittierte Photon übertragen und Verschränkung nachgewiesen.
Der neue Typ der Verschränkung hat viele Anwendungen, insbesondere im Bereich der Quanten-Informationsverarbeitung. Die Fähigkeit, Superpositionszustände und verschränkte Zustände zu speichern und zu verarbeiten, erlaubt effiziente Lösung von speziellen Problemen, welche auf klassischen Computern nicht innerhalb realistischer Zeit lösbar sind. Darüber hinaus erfordert und ermöglicht die quantenmechanische Natur dieser
Information prinzipiell neue Methoden der Kommunikation (z.B. Quanten-Teleportation und Kryptographie). Ein Teil dieser Arbeit beschäftigt sich mit der Implementierung des Protokolls zur Quantenteleportation an dem verschränkten
Atom-Photon Paar. Ein Zustand, welcher auf das Photon kodiert wurde, konnte erfolgreich auf den atomaren Spin ĂĽber eine Entfernung von 5 Metern teleportiert werden.
Mit Hilfe der Methoden und Instrumente, welche während dieser Arbeit entwickelt wurden, wird es möglich, zwei Atome über eine große Entfernung zu verschränken. Dazu ist es geplant, zwei separate Atomfallen simultan zu betreiben, um zwei verschränkte Atom-Photon Paare gleichzeitig zu erzeugen. Die Interferenz der Photonen erlaubt dann einen verschränkten Zustand für die zwei Atome zu erhalten, eine Schlüsselvoraussetzung für einen fundamentalen Test der Quantenmechanik, den so genannten Bell Test.Entanglement is one of the most fundamental features in quantum mechanics. It describes a non-separable state of two or more quantum objects and has certain properties which contradict common physical sense. While the concept of entanglement between two quantum systems, which was introduced by E. Schrödinger in 1935, is well understood, its generation and analysis still represent a substantial challenge. Especially entanglement between objects of different nature like atoms and photons was achieved only very recently and is subject of current research.
This thesis presents experiments on entanglement between a single Rubidium atom and a single photon. The atom is stored in an optical trap where it is well localized and its internal state can be manipulated by laser pulses. For generation of entanglement the atom is optically excited into a short-lived upper level from where it falls back emitting a single photon whose polarization is entangled with the atomic spin. During this work methods were developed which allow to prepare and to analyze the atom-photon state with high accuracy. In order to make
the entangled state available for further applications, several problems had to be solved. First, the internal atomic state is sensitive to external influence, in particular to magnetic and electromagnetic fields. To preserve the quantum state of the atom during the experimental time (which is of the order of microseconds) the external fields were compensated using a specially developed active stabilization system. The second problem is the communication of the photon to a different location. For this purpose an optical fiber link of 300 meters was set up. Since the polarization state of the photon is changed during
propagation due to mechanically and thermally induced birefringence in the fiber, a system for an active maintenance of polarization was implemented. Atom-photon entanglement was distributed over this fiber link confirming its reliability.
The new type of entanglement has many applications, particularly in the field of quantum information processing and communication. The ability to store and process quantum superpositions and entangled states allows to efficiently solve certain problems which can not be solved on classical computers within reasonable time. Furthermore the quantum nature of this information requires and enables fundamentally new communication methods (e.g. quantum teleportation and cryptography). A part of this thesis was dedicated to an implementation of the quantum teleportation protocol on the entangled atom-photon system. A state encoded onto the photon was successfully teleported to the atomic spin over a distance of 5 meters.
Using the tools developed in this work, it becomes feasible to entangle two atoms over a large distance. For this purpose two identical atomic traps will be operated simultaneously producing two entangled atom-photon pairs. The interference of photons will allow to entangle the two
atoms providing a key ingredient for a fundamental test of quantum mechanics, the so-called Bell test
Coherence of a qubit stored in Zeeman levels of a single optically trapped atom
We experimentally investigate the coherence properties of a qubit stored in
the Zeeman substates of the 5S1/2, F=1 hyperfine ground level of a single
optically trapped Rb-87 atom. Larmor precession of a single atomic spin-1
system is observed by preparing the atom in a defined initial spin-state and
then measuring the resulting state after a programmable period of free
evolution. Additionally, by performing quantum state tomography, maximum
knowledge about the spin coherence is gathered. By using an active magnetic
field stabilization and without application of a magnetic guiding field we
achieve transverse and longitudinal dephasing times of T2*=75..150 \mus and
T1>0.5 ms respectively. We derive the light-shift distribution of a single atom
in the approximately harmonic potential of a dipole trap and show that the
measured atomic spin coherence is limited mainly by residual position- and
state-dependent effects in the optical trapping potential. The improved
understanding enables longer coherence times, an important prerequisite for
future applications in long-distance quantum communication and computation with
atoms in optical lattices or for a loophole-free test of Bell's inequality.Comment: 9 pages, 5 figure
Highly-efficient state-selective sub-microsecond photoionization detection of single atoms
We experimentally demonstrate a detection scheme suitable for state analysis
of single optically trapped atoms in less than 1 {\mu}s with an overall
detection efficiency {\eta} exceeding 98%. The method is based on
hyperfine-state-selective photoionization and subsequent registration of the
correlated photoion-electron pairs by coincidence counting via two opposing
channel electron multipliers. The scheme enables the calibration of absolute
detection efficiencies and might be a key ingredient for future quantum
information applications or precision spectroscopy of ultracold atoms.Comment: 4 pages, 4 figure
Qube - A CubeSat for Quantum Key Distribution Experiments
In a world of global satellite communication networks, it is crucial to ensure the security of these data links. QUBE is a project that will develop and launch a CubeSat for the downlink of strongly attenuated light pulses, with encoded quantum information, which can be used for the exchange of encryption keys. This 3U Pico-Satellite will be built using the UNISEC-Europe standard, which has been proven to provide a robust framework for increased reliability for CubeSat missions. In addition to advanced reaction wheels for precision pointing, the satellite will be carrying the DLR-OSIRIS optical downlink system as well as dedicated payloads for testing components required for quantum key distribution. A miniaturized quantum random number generator (QRNG) will create a sequence of numbers, which can be used to set the quantum states of the light. The light pulses will then be downlinked to the optical ground station at DLR in Oberpfaffenhofen, Germany, which is equipped with the corresponding components for receiving the quantum states. Additionally, the random numbers will partially be made available via an RF downlink. This will allow evaluating the link loss as well as the noise and errors in the transmission of quantum signals. In QKD, due to the underlying quantum mechanics, any attempt of reading the quantum states will alter them, which makes interceptions easily detectable. The quantum communication experiments will evaluate whether secure communication links are possible even on a CubeSat scale. A major challenge for building the required CubeSat is the attitude determination and control system that will provide precise pointing. This work will outline detailed mission requirements as well as the chosen subsystems for tackling these challenges in order to deliver a successful mission
Towards a loophole-free test of Bell's inequality with entangled pairs of neutral atoms
Experimental tests of Bell's inequality allow to distinguish quantum
mechanics from local hidden variable theories. Such tests are performed by
measuring correlations of two entangled particles (e.g. polarization of photons
or spins of atoms). In order to constitute conclusive evidence, two conditions
have to be satisfied. First, strict separation of the measurement events in the
sense of special relativity is required ("locality loophole"). Second, almost
all entangled pairs have to be detected (for particles in a maximally entangled
state the required detector efficiency is 82.8%), which is hard to achieve
experimentally ("detection loophole"). By using the recently demonstrated
entanglement between single trapped atoms and single photons it becomes
possible to entangle two atoms at a large distance via entanglement swapping.
Combining the high detection efficiency achieved with atoms with the space-like
separation of the atomic state detection events, both loopholes can be closed
within the same experiment. In this paper we present estimations based on
current experimental achievements which show that such an experiment is
feasible in future.Comment: 6 pages, 3 figures, to be published in Advanced Science Letter
Self-testing with finite statistics enabling the certification of a quantum network link
Self-testing is a method to certify devices from the result of a Bell test.
Although examples of noise tolerant self-testing are known, it is not clear how
to deal efficiently with a finite number of experimental trials to certify the
average quality of a device without assuming that it behaves identically at
each run. As a result, existing self-testing results with finite statistics
have been limited to guarantee the proper working of a device in just one of
all experimental trials, thereby limiting their practical applicability. We
here derive a method to certify through self-testing that a device produces
states on average close to a Bell state without assumption on the actual state
at each run. Thus the method is free of the I.I.D. (independent and identically
distributed) assumption. Applying this new analysis on the data from a recent
loophole-free Bell experiment, we demonstrate the successful distribution of
Bell states over 398 meters with an average fidelity of 55.50% at a
confidence level of 99%. Being based on a Bell test free of detection and
locality loopholes, our certification is evidently device-independent, that is,
it does not rely on trust in the devices or knowledge of how the devices work.
This guarantees that our link can be integrated in a quantum network for
performing long-distance quantum communications with security guarantees that
are independent of the details of the actual implementation.Comment: 7+10 pages, 2+3 figures, 1 tabl
Entangling single atoms over 33 km telecom fibre
Quantum networks promise to provide the infrastructure for many disruptive
applications, such as efcient long-distance quantum communication and
distributed quantum computing1,2
. Central to these networks is the ability to
distribute entanglement between distant nodes using photonic channels. Initially
developed for quantum teleportation3,4
and loophole-free tests of Bell’s inequality5,6
,
recently, entanglement distribution has also been achieved over telecom fbres and
analysed retrospectively7,8
. Yet, to fully use entanglement over long-distance
quantum network links it is mandatory to know it is available at the nodes before the
entangled state decays. Here we demonstrate heralded entanglement between two
independently trapped single rubidium atoms generated over fbre links with a
length up to 33 km. For this, we generate atom–photon entanglement in two nodes
located in buildings 400 m line-of-sight apart and to overcome high-attenuation
losses in the fbres convert the photons to telecom wavelength using
polarization-preserving quantum frequency conversion9
. The long fbres guide the
photons to a Bell-state measurement setup in which a successful photonic projection
measurement heralds the entanglement of the atoms10. Our results show the
feasibility of entanglement distribution over telecom fbre links useful, for example,
for device-independent quantum key distribution11–13 and quantum repeater
protocols. The presented work represents an important step towards the realization
of large-scale quantum network links