19 research outputs found

    Ancient homology underlies adaptive mimetic diversity across butterflies

    Get PDF
    Convergent evolution provides a rare, natural experiment with which to test the predictability of adaptation at the molecular level. Little is known about the molecular basis of convergence over macro-evolutionary timescales. Here we use a combination of positional cloning, population genomic resequencing, association mapping and developmental data to demon-strate that positionally orthologous nucleotide variants in the upstream region of the same gene, WntA, are responsible for parallel mimetic variation in two butterfly lineages that diverged 465 million years ago. Furthermore, characterization of spatial patterns of WntA expression during development suggests that alternative regulatory mechanisms underlie wing pattern variation in each system. Taken together, our results reveal a strikingly predictable molecular basis for phenotypic convergence over deep evolutionary time

    The Role of Natural-Based Biomaterials in Advanced Therapies for Autoimmune Diseases

    No full text
    Autoimmune diseases (ADs) constitute a heterogeneous group of more than 100 pathophysiological conditions in which an immune response against the self is observed. The incidence and prevalence of these chronic diseases are increasing with inherently high social and economic impacts. The currently available therapies generally focus on reducing the activity of the immune system and, therefore, can present severe side effects such as enhanced patient susceptibility to opportunistic infections. Advanced therapies emerged as promising treatments and with real curative potential for ADs. Additionally, the use of natural polymers to engineer gene therapies, cell therapies and/or tissue-engineered medicinal products presents specific advantages. Natural polymers present higher affinity with biological systems than synthetic polymers, and frequently have a chemical structure and motifs similar to those existing in the extracellular matrix of the tissues. They also have good biological performance, making them very strong candidates for advanced therapy medicinal products. This review discusses the therapeutic advances and provides demonstrative examples of the role of natural-based biomaterials for the development of advanced therapies for ADs.Programa Operacional Norte 2020 under the research project FROnTHERA (NORTE-01-0145-FEDER-000023) and the Fundação para a Ciência e Tecnologia do Ministério da Ciência e Tecnologia (FCT, Portugal) under the research project SPARTAN (PTDC/CTM-BIO/4388/2014)info:eu-repo/semantics/publishedVersio

    Regulation of gene expression by oxygen in Saccharomyces cerevisiae

    No full text
    corecore