21 research outputs found
Advances in dyslipidemia management for prevention of atherosclerosis: PCSK9 monoclonal antibody therapy and beyond
In 2003, select families with familial hypercholesterolemia were first identified to have gain-of-function mutations for proprotein convertase subtilisin kexin type 9 (PCSK9) followed, in 2006, by the identification of those with lifelong low levels of LDL-C and lowered atherosclerotic cardiovascular disease (ASCVD) risk who had loss-of-function PCSK9 mutations. These discoveries led to the rapid development of PSCK9-targeted monoclonal antibody (PCSK9 mAb) therapies and, in 2015, 2 'fully-humanized' PCSK9 mAbs (alirocumab and evolocumab) were marketed in the United States, Europe, and other countries. In a wide range of high risk patients, with and without ASCVD, these PCSK9 mAbs, as once or twice monthly subcutaneous injections, potently reduce LDL-C 50-65% beyond levels achieved by maximally tolerated statin therapy; approximately one-third of patients achieve LDL-C levels <25 mg/dL. In the US, PCSK9 mAb therapy has current limited indications for persons with ASCVD or familial hypercholesterolemia requiring additional LDL-C reduction beyond maximally tolerated statin therapy. The first of the ASCVD outcomes-driven trials, the FOURIER trial has very recently shown in over 27,000 subjects randomized to evolocumab or placebo on top of moderate or high intensity statin therapy, a 15% risk reduction in the primary and 20% reduction in the secondary outcome over 2.2 years of treatment. Also of interest in patients with coronary artery disease on statin therapies, once-monthly evolocumab treatment, for only 76 weeks, resulted in significant plaque atheroma volume regression, as assessed by serial intravascular ultrasonography imaging, in approximately two-thirds of treated patients. Finally, in development is a highly durable RNA interference therapeutic inhibitor of PCSK9 synthesis which from a single dosage has been shown to maintain, for 6 months, a 75% reduction in PCSK9 levels and 50% reductions in LDL-C levels. The potential role of this vaccination-like product, as well as currently available PCSK9 mAb therapies, represents significant therapeutic advances to address ASCVD residual risk
Discordance of Low-Density Lipoprotein and High-Density Lipoprotein Cholesterol Particle Versus Cholesterol Concentration for the Prediction of Cardiovascular Disease in Patients With Metabolic Syndrome and Diabetes Mellitus (from the Multi-Ethnic Study of Atherosclerosis [MESA]).
A stronger association for low-density lipoprotein particle (LDL-P) and high-density lipoprotein particle (HDL-P) versus cholesterol concentrations (LDL-C and HDL-C) in predicting coronary heart disease (CHD) has been noted. We evaluate the role of these factors and extent of particle-cholesterol discordance in those with diabetes mellitus (DM) and metabolic syndrome (MetS) for event prediction. In the Multi-Ethnic Study of Atherosclerosis, we examined discordance of LDL and HDL (defined as a subject's difference between baseline particle and cholesterol percentiles), LDL-C, LDL-P, HDL-C, and HDL-P in relation to incident CHD and cardiovascular disease (CVD) events in subjects with DM, MetS (without DM), or neither condition using Cox regression. Of the 6,417 subjects with 10-year follow-up, those with MetS (n = 1,596) and DM (n = 838) had significantly greater LDL and HDL discordance compared with those without these conditions. In discordance models, only LDL discordance (per SD) within the MetS group was positively associated with CHD events (adjusted hazard ratio [HR] = 1.22, 95% confidence interval [CI] 1.01 to 1.48, p <0.05). In models with individual particle/cholesterol variables (per SD), within the DM group, HDL-P was inversely (HR 0.71, 95% CI 0.52 to 0.96, p <0.05) and LDL-C positively (HR 1.47, 95% CI 1.07 to 2.03, p <0.05) associated with CHD. In those with MetS, only LDL-P was positively associated with CHD (HR 1.34, 95% CI 1.00 to 1.78, p <0.05). Similar findings were also seen for CVD. LDL discordance and higher LDL-P in MetS, and higher LDL-C and lower HDL-P in DM, predict CHD and CVD, supporting a potential role for examining lipoprotein particles and discordances in those with MetS and DM
Recommended from our members
AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY GUIDELINES FOR MANAGEMENT OF DYSLIPIDEMIA AND PREVENTION OF CARDIOVASCULAR DISEASE
The development of these guidelines is mandated by the American Association of Clinical Endocrinologists (AACE) Board of Directors and American College of Endocrinology (ACE) Board of Trustees and adheres with published AACE protocols for the standardized production of clinical practice guidelines (CPGs).
Recommendations are based on diligent reviews of the clinical evidence with transparent incorporation of subjective factors, according to established AACE/ACE guidelines for guidelines protocols.
The Executive Summary of this document contains 87 recommendations of which 45 are Grade A (51.7%), 18 are Grade B (20.7%), 15 are Grade C (17.2%), and 9 (10.3%) are Grade D. These detailed, evidence-based recommendations allow for nuance-based clinical decision-making that addresses multiple aspects of real-world medical care. The evidence base presented in the subsequent Appendix provides relevant supporting information for Executive Summary Recommendations. This update contains 695 citations of which 203 (29.2 %) are EL 1 (strong), 137 (19.7%) are EL 2 (intermediate), 119 (17.1%) are EL 3 (weak), and 236 (34.0%) are EL 4 (no clinical evidence).
This CPG is a practical tool that endocrinologists, other health care professionals, health-related organizations, and regulatory bodies can use to reduce the risks and consequences of dyslipidemia. It provides guidance on screening, risk assessment, and treatment recommendations for a range of individuals with various lipid disorders. The recommendations emphasize the importance of treating low-density lipoprotein cholesterol (LDL-C) in some individuals to lower goals than previously endorsed and support the measurement of coronary artery calcium scores and inflammatory markers to help stratify risk. Special consideration is given to individuals with diabetes, familial hypercholesterolemia, women, and youth with dyslipidemia. Both clinical and cost-effectiveness data are provided to support treatment decisions.
4S = Scandinavian Simvastatin Survival Study A1C = glycated hemoglobin AACE = American Association of Clinical Endocrinologists AAP = American Academy of Pediatrics ACC = American College of Cardiology ACE = American College of Endocrinology ACS = acute coronary syndrome ADMIT = Arterial Disease Multiple Intervention Trial ADVENT = Assessment of Diabetes Control and Evaluation of the Efficacy of Niaspan Trial AFCAPS/TexCAPS = Air Force/Texas Coronary Atherosclerosis Prevention Study AHA = American Heart Association AHRQ = Agency for Healthcare Research and Quality AIM-HIGH = Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides trial ASCVD = atherosclerotic cardiovascular disease ATP = Adult Treatment Panel apo = apolipoprotein BEL = best evidence level BIP = Bezafibrate Infarction Prevention trial BMI = body mass index CABG = coronary artery bypass graft CAC = coronary artery calcification CARDS = Collaborative Atorvastatin Diabetes Study CDP = Coronary Drug Project trial CI = confidence interval CIMT = carotid intimal media thickness CKD = chronic kidney disease CPG(s) = clinical practice guideline(s) CRP = C-reactive protein CTT = Cholesterol Treatment Trialists CV = cerebrovascular CVA = cerebrovascular accident EL = evidence level FH = familial hypercholesterolemia FIELD = Secondary Endpoints from the Fenofibrate Intervention and Event Lowering in Diabetes trial FOURIER = Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects With Elevated Risk trial HATS = HDL-Atherosclerosis Treatment Study HDL-C = high-density lipoprotein cholesterol HeFH = heterozygous familial hypercholesterolemia HHS = Helsinki Heart Study HIV = human immunodeficiency virus HoFH = homozygous familial hypercholesterolemia HPS = Heart Protection Study HPS2-THRIVE = Treatment of HDL to Reduce the Incidence of Vascular Events trial HR = hazard ratio HRT = hormone replacement therapy hsCRP = high-sensitivity CRP IMPROVE-IT = Improved Reduction of Outcomes: Vytorin Efficacy International Trial IRAS = Insulin Resistance Atherosclerosis Study JUPITER = Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin LDL-C = low-density lipoprotein cholesterol Lp-PLA2 = lipoprotein-associated phospholipase A2 MACE = major cardiovascular events MESA = Multi-Ethnic Study of Atherosclerosis MetS = metabolic syndrome MI = myocardial infarction MRFIT = Multiple Risk Factor Intervention Trial NCEP = National Cholesterol Education Program NHLBI = National Heart, Lung, and Blood Institute PCOS = polycystic ovary syndrome PCSK9 = proprotein convertase subtilisin/kexin type 9 Post CABG = Post Coronary Artery Bypass Graft trial PROSPER = Prospective Study of Pravastatin in the Elderly at Risk trial QALY = quality-adjusted life-year ROC = receiver-operator characteristic SOC = standard of care SHARP = Study of Heart and Renal Protection T1DM = type 1 diabetes mellitus T2DM = type 2 diabetes mellitus TG = triglycerides TNT = Treating to New Targets trial VA-HIT = Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial VLDL-C = very low-density lipoprotein cholesterol WHI = Women's Health Initiative
Recommended from our members
Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Management of Dyslipidemia and Prevention of Cardiovascular Disease Algorithm - 2020 Executive Summary
The treatment of lipid disorders begins with lifestyle therapy to improve nutrition, physical activity, weight, and other factors that affect lipids. Secondary causes of lipid disorders should be addressed, and pharmacologic therapy initiated based on a patient's risk for atherosclerotic cardiovascular disease (ASCVD). Patients at extreme ASCVD risk should be treated with high-intensity statin therapy to achieve a goal low-density lipoprotein cholesterol (LDL-C) of <55 mg/dL, and those at very high ASCVD risk should be treated to achieve LDL-C <70 mg/dL. Treatment for moderate and high ASCVD risk patients may begin with a moderate-intensity statin to achieve an LDL-C <100 mg/dL, while the LDL-C goal is <130 mg/dL for those at low risk. In all cases, treatment should be intensified, including the addition of other LDL-C-lowering agents (i.e., proprotein convertase subtilisin/kexin type 9 inhibitors, ezetimibe, colesevelam, or bempedoic acid) as needed to achieve treatment goals. When targeting triglyceride levels, the desirable goal is <150 mg/dL. Statin therapy should be combined with a fibrate, prescription-grade omega-3 fatty acid, and/or niacin to reduce triglycerides in all patients with triglycerides ≥500 mg/dL, and icosapent ethyl should be added to a statin in any patient with established ASCVD or diabetes with ≥2 ASCVD risk factors and triglycerides between 135 and 499 mg/dL to prevent ASCVD events. Management of additional risk factors such as elevated lipoprotein(a) and statin intolerance is also described
Recommended from our members