6 research outputs found
Recommended from our members
Thalamo-frontal white matter alterations in chronic schizophrenia
Diffusion tensor imaging (DTI) and fiber tractography are useful tools for reconstructing white matter tracts (WMT) in the brain. Previous tractography studies have sought to segment reconstructed WMT into anatomical structures using several approaches, but quantification has been limited to extracting mean values of diffusion indices. Delineating WMT in schizophrenia is of particular interest because schizophrenia has been hypothesized to be a disorder of disrupted connectivity, especially between frontal and temporal regions of the brain. In this study, we aim to differentiate diffusion properties of thalamo-frontal pathways in schizophrenia from normal controls. We present a quantitative group comparison method, which combines the strengths of both tractography-based and voxel-based studies. Our algorithm extracts white matter pathways using whole brain tractography. Functionally relevant bundles are selected and parsed from the resulting set of tracts, using an internal capsule (IC) region of interest (ROI) as “source”, and different Brodmann area (BA) ROIs as “targets”. The resulting bundles are then longitudinally parameterized so that diffusion properties can be measured and compared along the WMT. Using this processing pipeline, we were able to find altered diffusion properties in male patients with chronic schizophrenia in terms of fractional anisotropy (FA) decreases and mean diffusivity (MD) increases in precise and functionally relevant locations. These findings suggest that our method can enhance the regional and functional specificity of DTI group studies, thus improving our understanding of brain function
Recommended from our members
Anterior limb of the internal capsule in schizophrenia: a diffusion tensor tractography study
Thalamo-cortical feedback loops play a key role in the processing and coordination of processing and integration of perceptual inputs and outputs, and disruption in this connection has long been hypothesized to contribute significantly to neuropsychological disturbances in schizophrenia. To test this hypothesis, we applied diffusion tensor tractography on eighteen patients suffering schizophrenia and 20 control subjects. Fractional anisotropy (FA) was evaluated in the bilateral anterior and posterior limbs of the internal capsule, and correlated with clinical and neurocognitive measures. Patients diagnosed with schizophrenia showed significantly reduced FA bilaterally in the anterior but not the posterior limb of the internal capsule, compared with healthy control subjects. Lower FA correlated with lower scores on tests of declarative episodic memory in the patient group only. These findings suggest that disruptions, bilaterally, in thalamo-cortical connections in schizophrenia may contribute to disease-related impairment in the coordination of mnemonic processes of encoding and retrieval that are vital for efficient learning of new information
Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes
N-methyl-D-aspartate (NMDA) receptors mediate excitatory neurotransmission in the mammalian brain. Two glycine-binding NR1 subunits and two glutamate-binding NR2 subunits each form highly Ca²(+)-permeable cation channels which are blocked by extracellular Mg²(+) in a voltage-dependent manner. Either GRIN2B or GRIN2A, encoding the NMDA receptor subunits NR2B and NR2A, was found to be disrupted by chromosome translocation breakpoints in individuals with mental retardation and/or epilepsy. Sequencing of GRIN2B in 468 individuals with mental retardation revealed four de novo mutations: a frameshift, a missense and two splice-site mutations. In another cohort of 127 individuals with idiopathic epilepsy and/or mental retardation, we discovered a GRIN2A nonsense mutation in a three-generation family. In a girl with early-onset epileptic encephalopathy, we identified the de novo GRIN2A mutation c.1845C>A predicting the amino acid substitution p.N615K. Analysis of NR1-NR2A(N615K) (NR2A subunit with the p.N615K alteration) receptor currents revealed a loss of the Mg²(+) block and a decrease in Ca²(+) permeability. Our findings suggest that disturbances in the neuronal electrophysiological balance during development result in variable neurological phenotypes depending on which NR2 subunit of NMDA receptors is affected
Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes.
N-methyl-D-aspartate (NMDA) receptors mediate excitatory neurotransmission in the mammalian brain. Two glycine-binding NR1 subunits and two glutamate-binding NR2 subunits each form highly Ca(2)(+)-permeable cation channels which are blocked by extracellular Mg(2)(+) in a voltage-dependent manner. Either GRIN2B or GRIN2A, encoding the NMDA receptor subunits NR2B and NR2A, was found to be disrupted by chromosome translocation breakpoints in individuals with mental retardation and/or epilepsy. Sequencing of GRIN2B in 468 individuals with mental retardation revealed four de novo mutations: a frameshift, a missense and two splice-site mutations. In another cohort of 127 individuals with idiopathic epilepsy and/or mental retardation, we discovered a GRIN2A nonsense mutation in a three-generation family. In a girl with early-onset epileptic encephalopathy, we identified the de novo GRIN2A mutation c.1845C>A predicting the amino acid substitution p.N615K. Analysis of NR1-NR2A(N615K) (NR2A subunit with the p.N615K alteration) receptor currents revealed a loss of the Mg(2)(+) block and a decrease in Ca(2)(+) permeability. Our findings suggest that disturbances in the neuronal electrophysiological balance during development result in variable neurological phenotypes depending on which NR2 subunit of NMDA receptors is affected
2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery.
To access publisher's full text version of this article click on the hyperlink belowEuropean Association for Cardio-Thoracic Surgery (EACTS)
European Association for Cardio-Thoracic Anaesthesiology (EACTA)
European Board of Cardiovascular Perfusion (EBCP