4 research outputs found

    Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells.

    Get PDF
    The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na(+)) and, indirectly, serum potassium (K(+)) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 ((22)Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive (22)Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K(+), the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. (22)Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion

    The thiazide sensitive sodium chloride co-transporter NCC is modulated by site-specific ubiquitylation.

    Get PDF
    The renal sodium chloride cotransporter, NCC, in the distal convoluted tubule is important for maintaining body Na(+) and K(+) homeostasis. Endogenous NCC is highly ubiquitylated, but the role of individual ubiquitylation sites is not established. Here, we assessed the role of 10 ubiquitylation sites for NCC function. Transient transfections of HEK293 cells with human wildtype (WT) NCC or various K to R mutants identified greater membrane abundance for K706R, K828R and K909R mutants. Relative to WT-NCC, stable tetracycline inducible MDCKI cell lines expressing K706R, K828R and K909R mutants had significantly higher total and phosphorylated NCC levels at the apical plasma membrane under basal conditions. Low chloride stimulation increased membrane abundance of all mutants to similar or greater levels than WT-NCC. Under basal conditions K828R and K909R mutants had less ubiquitylated NCC in the plasma membrane, and all mutants displayed reduced NCC ubiquitylation following low chloride stimulation. Thiazide-sensitive sodium-22 uptakes were elevated in the mutants and internalization from the plasma membrane was significantly less than WT-NCC. K909R had increased half-life, whereas chloroquine or MG132 treatment indicated that K706 and K909 play roles in lysosomal and proteasomal NCC degradation, respectively. In conclusion, site-specific ubiquitylation of NCC plays alternative roles for NCC function

    Author Correction: The thiazide sensitive sodium chloride co-transporter NCC is modulated by site-specific ubiquitylation.

    No full text
    A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has been fixed in the paper

    K+-induced natriuresis is preserved during Na+ depletion and accompanied by inhibition of the Na+-Cl- cotransporter

    No full text
    During hypovolemia and hyperkalemia, the kidneys defend homeostasis by Na+ retention and K+ secretion, respectively. Aldosterone mediates both effects, but it is unclear how the same hormone can evoke such different responses. To address this, we mimicked hypovolemia and hyperkalemia in four groups of rats with a control diet, low-Na+ diet, high-K+ diet, or combined diet. The low-Na+ and combined diets increased plasma and kidney ANG II. The low-Na+ and high-K+ diets increased plasma aldosterone to a similar degree (3-fold), whereas the combined diet increased aldosterone to a greater extent (10-fold). Despite similar Na+ intake and higher aldosterone, the high-K+ and combined diets caused a greater natriuresis than the control and low-Na+ diets, respectively (P < 0.001 for both). This K+-induced natriuresis was accompanied by a decreased abundance but not phosphorylation of the Na+-Cl- cotransporter (NCC). In contrast, the epithelial Na+ channel (ENaC) increased in parallel with aldosterone, showing the highest expression with the combined diet. The high-K+ and combined diets also incr
    corecore