14 research outputs found
Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients
BACKGROUND: Our aim was to examine whether serial blood lactate levels could be used as predictors of outcome. METHODS: We prospectively studied 44 high-risk, hemodynamically stable, surgical patients. Blood lactate values, mean arterial pressure, heart rate and urine output were obtained at patient admission to the study, at 12, 24 and 48 hours. RESULTS: The nonsurvivors (n = 7) had similar blood lactate levels initially (3.1 ± 2.3 mmol/l versus 2.2 ± 1.0 mmol/l, P = not significant [NS]), but had higher levels after 12 hours (2.9 ± 1.7 mmol/l versus 1.6 ± 0.9 mmol/l, P = 0.012), after 24 hours (2.1 ± 0.6 mmol/l versus 1.5 ± 0.7 mmol/l, P = NS) and after 48 hours (2.7 ± 1.8 mmol/l versus 1.9 ± 1.4 mmol/l, P = NS) as compared with the survivors (n = 37). Arterial bicarbonate concentrations increased significantly in survivors and were higher than in nonsurvivors after 24 hours (22.9 ± 5.2 mEq/l versus 16.7 ± 3.9 mEq/l, P = 0.01) and after 48 hours (23.1 ± 4.1 mEq/l versus 17.6 ± 7.1 mEq/l, P = NS). The PaO(2)/FiO(2 )ratio was higher in survivors initially (334 ± 121 mmHg versus 241 ± 133 mmHg, P = 0.03) and remained elevated for 48 hours. There were no significant differences in mean arterial pressure, heart rate, and arterial blood oxygenation at any time between survivors and nonsurvivors. The intensive care unit stay (40 ± 42 hours versus 142 ± 143 hours, P < 0.001) and the hospital stay (12 ± 11 days versus 24 ± 17 days, P = 0.022) were longer for nonsurvivors than for survivors. The Simplified Acute Physiology Score II score was higher for nonsurvivors than for survivors (34 ± 9 versus 25 ± 14, P = NS). The urine output was slightly lower in the nonsurvivor group (P = NS). The areas under the receiving operating characteristic curves were larger for initial values of Simplified Acute Physiology Score II and blood lactate for predicting death. CONCLUSION: Elevated blood lactate levels are associated with a higher mortality rate and postoperative complications in hemodynamically stable surgical patients
Factors influencing physical functional status in intensive care unit survivors two years after discharge
BACKGROUND: Studies suggest that in patients admitted to intensive care units (ICU), physical functional status (PFS) improves over time, but does not return to the same level as before ICU admission. The goal of this study was to assess physical functional status two years after discharge from an ICU and to determine factors influencing physical status in this population. METHODS: The study reviewed all patients admitted to two non-trauma ICUs during a one-year period and included patients with age ≥ 18 yrs, ICU stay ≥ 24 h, and who were alive 24 months after ICU discharge. To assess PFS, Karnofsky Performance Status Scale scores and Lawton-Instrumental Activities of Daily Living (IADL) scores at ICU admission (K-ICU and L-ICU) were compared to the scores at the end of 24 months (K-24mo and L-24mo). Data at 24 months were obtained through telephone interviews. RESULTS: A total of 1,216 patients were eligible for the study. Twenty-four months after ICU discharge, 499 (41.6%) were alive, agreed to answer the interview, and had all hospital data available. PFS (K-ICU: 86.6 ± 13.8 vs. K-24mo: 77.1 ± 19.6, p < 0.001) and IADL (L-ICU: 27.0 ± 11.7 vs. L-24mo: 22.5 ± 11.5, p < 0.001) declined in patients with medical and unplanned surgical admissions. Most strikingly, the level of dependency increased in neurological patients (K-ICU: 86 ± 12 vs. K-24mo: 64 ± 21, relative risk [RR] 2.6, 95% CI, 1.8–3.6, p < 0.001) and trauma patients (K-ICU: 99 ± 2 vs. K-24mo: 83 ± 21, RR 2.7, 95% CI, 1.6–4.6, p < 0.001). The largest reduction in the ability to perform ADL occurred in neurological patients (L-ICU: 27 ± 7 vs. L-24mo: 15 ± 12, RR 3.3, 95% CI, 2.3–4.6 p < 0.001), trauma patients (L-ICU: 32 ± 0 vs. L-24mo: 25 ± 11, RR 2.8, 95% CI, 1.5–5.1, p < 0.001), patients aged ≥ 65 years (RR 1.4, 95% CI, 1.07–1.86, p = 0.01) and those who received mechanical ventilation for ≥ 8 days (RR 1.48, 95% CI, 1.02–2.15, p = 0.03). CONCLUSIONS: Twenty-four months after ICU discharge, PFS was significantly poorer in patients with neurological injury, trauma, age ≥ 65 tears, and mechanical ventilation ≥ 8 days. Future studies should focus on the relationship between PFS and health-related quality of life in this population
Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial
Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt
Time course of (a) blood lactate and (b) arterial bicarbonate concentrations in survivors (●) and in nonsurvivors (▽)
<p><b>Copyright information:</b></p><p>Taken from "Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients"</p><p>Critical Care 2004;8(2):R60-R65.</p><p>Published online 12 Jan 2004</p><p>PMCID:PMC420024.</p><p>Copyright © 2004 Meregalli et al., licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.</p> Values are mean ± standard deviation. *Significant (< 0.05) differences between the two groups at 24 hours. **Significant (< 0.05) differences versus baseline
Prediction of chronic critical illness in a general intensive care unit
OBJECTIVE: To assess the incidence, costs, and mortality associated with chronic critical illness (CCI), and to identify clinical predictors of CCI in a general intensive care unit. METHODS: This was a prospective observational cohort study. All patients receiving supportive treatment for over 20 days were considered chronically critically ill and eligible for the study. After applying the exclusion criteria, 453 patients were analyzed. RESULTS: There was an 11% incidence of CCI. Total length of hospital stay, costs, and mortality were significantly higher among patients with CCI. Mechanical ventilation, sepsis, Glasgow score < 15, inadequate calorie intake, and higher body mass index were independent predictors for cci in the multivariate logistic regression model. CONCLUSIONS: CCI affects a distinctive population in intensive care units with higher mortality, costs, and prolonged hospitalization. Factors identifiable at the time of admission or during the first week in the intensive care unit can be used to predict CCI
Association between tidal volume size, duration of ventilation, and sedation needs in patients without acute respiratory distress syndrome: an individual patient data meta-analysis
Mechanical ventilation with lower tidal volumes (≤6 ml/kg of predicted body weight, PBW) could benefit patients without acute respiratory distress syndrome (ARDS). However, tidal volume reduction could be associated with increased patient discomfort and sedation needs, and consequent longer duration of ventilation. The aim of this individual patient data meta-analysis was to assess the associations between tidal volume size, duration of mechanical ventilation, and sedation needs in patients without ARDS. Studies comparing ventilation with different tidal volume sizes in patients without ARDS were screened for inclusion. Corresponding authors were asked to provide individual participant data. Patients were assigned to three groups based on tidal volume size (≤6 ml/kg PBW, 6-10 ml/kg PBW, or ≥10 ml/kg PBW). Ventilator-free days, alive at day 28, and dose and duration of sedation (propofol and midazolam), analgesia (fentanyl and morphine), and neuromuscular blockade (NMB) were compared. Seven investigations (2,184 patients) were included in the analysis. The number of patients breathing without assistance by day 28 was higher in the group ventilated with tidal volume ≤6 ml/kg PBW compared to those ventilated with tidal volume ≥10 ml/kg PBW (93.1 vs. 88.6%; p = 0.027, respectively). Only two investigations (187 patients) could be included in the meta-analysis of sedation needs. There were neither differences in the percentage of study days that patients received sedatives, opioids, or NMBA nor in the total dose of benzodiazepines, propofol, opioids, and NMBA. This meta-analysis suggests that use of lower tidal volumes in patients without ARDS at the onset of mechanical ventilation could be associated with shorter duration of ventilation. Use of lower tidal volumes seems not to affect sedation or analgesia needs, but this must be confirmed in a robust, well-powered randomized controlled tria