2,379 research outputs found

    Quantum impurity in a Tomonaga-Luttinger liquid: continuous-time quantum Monte Carlo approach

    Full text link
    We develop a continuous-time quantum Monte Carlo (CTQMC) method for quantum impurities coupled to interacting quantum wires described by a Tomonaga-Luttinger liquid. The method is negative-sign free for any values of the Tomonaga-Luttinger parameter, which is rigorously proved, and thus, efficient low-temperature calculations are possible. Duality between electrons and bosons in one dimensional systems allows us to construct a simple formula for the CTQMC algorithm in these systems. We show that the CTQMC for Tomonaga-Luttinger liquids can be implemented with only minor modifications of previous CTQMC codes developed for impurities coupled to non-interacting fermions. We apply this method to the Kane-Fisher model of a potential scatterer in a spin-less quantum wire and to a single spin coupled with the edge state of a two-dimensional topological insulator assuming an anisotropic XXZ coupling. Various dynamical response functions such as the electron Green's function and spin-spin correlation functions are calculated numerically and their scaling properties are discussed.Comment: 15 pages, 11 figure

    Wilson chains are not thermal reservoirs

    Full text link
    Wilson chains, based on a logarithmic discretization of a continuous spectrum, are widely used to model an electronic (or bosonic) bath for Kondo spins and other quantum impurities within the numerical renormalization group method and other numerical approaches. In this short note we point out that Wilson chains can not serve as thermal reservoirs as their temperature changes by a number of order Delta E when a finite amount of energy Delta E is added. This proves that for a large class of non-equilibrium problems they cannot be used to predict the long-time behavior.Comment: 2 page

    Non-equilibrium conductance of a three-terminal quantum dot in the Kondo regime: Perturbative Renormalization Group

    Full text link
    Motivated by recent experiments, we consider a single-electron transistor in the Kondo regime which is coupled to three leads in the presence of large bias voltages. Such a steady-state non-equilibrium system is to a large extent governed by a decoherence rate induced by the current through the dot. As the two-terminal conductance turns out to be rather insensitive to the decoherence rate, we study the conductance in a three-terminal device using perturbative renormalization group and calculate the characteristic splitting of the Kondo resonance. The interplay between potential biases and anisotropy in coupling to the three leads determines the decoherence rate and the conditions for strong coupling.Comment: 4 pages, 4 figure

    Climbing the Entropy Barrier: Driving the Single- towards the Multichannel Kondo Effect by a Weak Coulomb Blockade of the Leads

    Full text link
    We study a model proposed recently in which a small quantum dot is coupled symmetrically to several large quantum dots characterized by a charging energy E_c. Even if E_c is much smaller than the Kondo temperature T_K, the long-ranged interactions destabilize the single-channel Kondo effect and induce a flow towards a multi-channel Kondo fixed point associated with a rise of the impurity entropy with decreasing temperature. Such an ``uphill flow'' implies a negative impurity specific heat, in contrast to all systems with local interactions. An exact solution found for a large number of channels allows us to capture this physics and to predict transport properties.Comment: 4 pages, 3 figures. Recent references and new title added in published versio

    Breathing Modes and Hidden Symmetry of Trapped Atoms in 2D

    Full text link
    Atoms confined in a harmonic potential show universal oscillations in 2D. We point out the connection of these ''breathing'' modes to the presence of a hidden symmetry. The underlying symmetry SO(2,1), i.e. the two dimensional Lorentz group, allows pulsating solutions to be constructed for the interacting quantum system and for the corresponding nonlinear Gross-Pitaevskii equation. We point out how this symmetry can be used as a probe for recently proposed experiments of trapped atoms in 2D.Comment: 4 pages, small changes in title and text, references adde
    • …
    corecore