3 research outputs found

    Divergence and efficiency optimization in polarization-controlled two-color high-harmonic generation

    No full text
    Improving the brightness of high-harmonic generation (HHG) sources is one of the major goals for next-generation ultrafast, imaging and metrology applications in the extreme-ultraviolet spectrum. Previous research efforts have demonstrated a plethora of techniques to increase the conversion efficiency of HHG. However, few studies so far have addressed how to simultaneously minimize the divergence and improve focusability, which all contribute to an increased brightness of the source. Here, we investigate how to improve both photon yield and divergence, which is directly linked to focusability, when adding the second harmonic to the fundamental driving field. We study the effects of the relative polarization in two-color HHG and compare the results to a one-color configuration. In a perpendicular two-color field, the relative phase between the two colors can be used to suppress or enhance recombination of either the long or the short trajectories. This allows to exert control over the divergence of the harmonics. In a parallel two-color field, the ionization rate is modified through the two-color phase, which selects trajectories during the ionization step. This enhances the total yield. We elaborate on the underlying mechanisms for parallel, perpendicular, and intermediate polarization angles, and confirm our experimental observations with simulations

    Extreme-Ultraviolet Shaping and Imaging by High-Harmonic Generation from Nanostructured Silica

    No full text
    Funding Information: Part of this work has been carried out at the Advanced Research Center for Nanolithography (ARCNL), a public-private partnership of the University of Amsterdam (UvA), the Vrije Universiteit Amsterdam (VU), the Dutch Research Council (NWO), and the semiconductor equipment manufacturer ASML, and was partly financed by Toeslag voor Topconsortia voor Kennis en Innovatie (TKI) from the Dutch Ministry of Economic Affairs and Climate Policy. We thank Reinout Jaarsma for technical support, and the mechanical workshop and the design, electronic, and software departments of ARCNL for support in constructing the setup. P. M. K. acknowledges support from NWO Veni Grant 016.Veni.192.254. Numerical simulations were performed at the research institute AMOLF, as part of the research programs Hybrid Nanophotonic Architectures for Ultrafast Quantum Optics (Project No. 680.47.621) and Nanophotonics for Solid-State Lighting (Project FOM-i33/680.93.33), both partly financed by NWO. Parts of the simulations were performed within the Aalto University School of Science Science-IT project, and were funded by the Academy of Finland Flagship Programme, Photonics Research and Innovation (PREIN), decision number: 320167. Publisher Copyright: © 2022 authors. Published by the American Physical Society.Coherent extreme-ultraviolet pulses from high-harmonic generation have ample applications in attosecond science, lensless imaging, and industrial metrology. However, tailoring complex spatial amplitude, phase, and polarization properties of extreme-ultraviolet pulses is made nontrivial by the lack of efficient optical elements. Here, we have overcome this limitation through nanoengineered solid samples, which enable direct control over amplitude and phase patterns of nonlinearly generated extreme-ultraviolet pulses. We demonstrate experimental configurations and emitting structures that yield spatially patterned beam profiles, increased conversion efficiencies, and tailored polarization states. Furthermore, we use the emitted patterns to reconstruct height profiles, probe the near-field confinement in nanostructures below the diffraction limit of the fundamental radiation, and to image complex structures through coherent diffractive emission from these structures. Our results pave the way for introducing sub-fundamental-wavelength resolution imaging, direct manipulation of beams through nanoengineered samples, and metrology of nanostructures into the extreme-ultraviolet spectral range.Peer reviewe

    Temporal Dynamics of Collective Resonances in Periodic Metasurfaces

    No full text
    Temporal dynamics of confined optical fields can provide valuable insights into light–matter interactions in complex optical systems, going beyond their frequency-domain description. Here, we present a new experimental approach based on interferometric autocorrelation (IAC) that reveals the dynamics of optical near-fields enhanced by collective resonances in periodic metasurfaces. We focus on probing the resonances known as waveguide-plasmon polaritons, which are supported by plasmonic nanoparticle arrays coupled to a slab waveguide. To probe the resonant near-field enhancement, our IAC measurements make use of enhanced two-photon excited luminescence (TPEL) from semiconductor quantum dots deposited on the nanoparticle arrays. Thanks to the incoherent character of TPEL, the measurements are only sensitive to the fundamental optical fields and therefore can reveal clear signatures of their coherent temporal dynamics. In particular, we show that the excitation of a high-Q collective resonance gives rise to interference fringes at time delays as large as 500 fs, much greater than the incident pulse duration (150 fs). Based on these signatures, the basic characteristics of the resonances can be determined, including their Q factors, which are found to exceed 200. Furthermore, the measurements also reveal temporal beating between two different resonances, providing information on their frequencies and their relative contribution to the field enhancement. Finally, we present an approach to enhance the visibility of the resonances hidden in the IAC curves by converting them into spectrograms, which greatly facilitates the analysis and interpretation of the results. Our findings open up new perspectives on time-resolved studies of collective resonances in metasurfaces and other multiresonant systems.ChemE/Opto-electronic Material
    corecore