8 research outputs found

    Reply to Letter to the Editor HEP-20-0593

    Get PDF
    We sincerely thank Dr. Javitt for his interest in and perspective on our paper (1). He indicates that aspecific effects of Myrcludex B should be considered an explanation for increased biliary cholesterol and phospholipid secretion after Myrcludex B treatment as partial hepatectomy (PH) also leads to an increased contribution of pericentral hepatocytes to bile salt uptake and secretion but biliary cholesterol and phospholipid secretion are not affected. In our opinion, non-specific Myrcludex B-induced activation of canalicular or sinusoidal transporters seems unlikely given the absence of NTCP homology with these transporters and our data from experiments with SR-B1 or ABCG8 null mice. Myrcludex B is an NTCP-specific peptide showing minimal uptake by hepatocytes

    Blocking Sodium-Taurocholate Cotransporting Polypeptide Stimulates Biliary Cholesterol and Phospholipid Secretion in Mice

    Get PDF
    Active secretion of bile salts into the canalicular lumen drives bile formation and promotes biliary cholesterol and phospholipid output. Disrupting hepatic bile salt uptake, by inhibition of sodium-taurocholate cotransporting polypetide (NTCP; Slc10a1) with Myrcludex B, is expected to limit bile salt flux through the liver and thereby to decrease biliary lipid excretion. Here, we show that Myrcludex B–mediated NTCP inhibition actually causes an increase in biliary cholesterol and phospholipid excretion whereas biliary bile salt output and bile salt composition remains unchanged. Increased lysosomal discharge into bile was excluded as a potential contributor to increased biliary lipid secretion. Induction of cholesterol secretion was not a consequence of increased ATP-binding cassette subfamily G member 5/8 activity given that NTCP inhibition still promoted cholesterol excretion in Abcg8−/− mice. Stimulatory effects of NTCP inhibition were maintained in Sr-b1−/− mice, eliminating the possibility that the increase in biliary lipids was derived from enhanced uptake of high-density lipoprotein–derived lipids. NTCP inhibition shifts bile salt uptake, which is generally more periportally restricted, toward pericentral hepatocytes, as was visualized using a fluorescently labeled conjugated bile salt. As a consequence, exposure of the canalicular membrane to bile salts was increased, allowing for more cholesterol and phospholipid molecules to be excreted per bile salt. Conclusion: NTCP inhibition increases biliary lipid secretion, which is independent of alterations in bile salt output, biliary bile salt hydrophobicity, or increased activity of dedicated cholesterol and phospholipid transporters. Instead, NTCP inhibition shifts hepatic bile salt uptake from mainly periportal hepatocytes toward pericentral hepatocytes, thereby increasing exposure of the canalicular membrane to bile salts linking to increased biliary cholesterol secretion. This process provides an additional level of control to biliary cholesterol and phospholipid secretion

    Na+-taurocholate cotransporting polypeptide inhibition has hepatoprotective effects in cholestasis in mice

    No full text
    Accumulation of bile salts (BSs) during cholestasis leads to hepatic and biliary injury, driving inflammatory and fibrotic processes. The Na+-Taurocholate Cotransporting Polypeptide (NTCP) is the major hepatic uptake transporter of BSs, and can be specifically inhibited by myrcludex B. We hypothesized that inhibition of NTCP dampens cholestatic liver injury. Acute cholestasis was induced in mice by a 3.5-diethoxycarbonyl-1.4-dihydrocollidine (DDC) diet or by bile duct ligation (BDL). Chronic cholestasis was investigated in Atp8b1-G308V and Abcb4/Mdr2 deficient mice. Mice were injected daily with myrcludex B or vehicle. Myrcludex B reduced plasma alkaline phosphatase (ALP) levels in DDC-fed, Atp8b1-G308V and BDL mice by 39%, 27% and 48% respectively. Expression of genes involved in fibrosis, proliferation and inflammation was reduced by myrcludex B treatment in DDC-fed and Atp8b1-G308V mice. NTCP-inhibition increased plasma BS levels from 604±277 to 1746±719 μm in DDC-fed mice, 432±280 to 762±288 μm in Atp8b1-G308V mice and from 522±130 to 3625±378 μm in BDL mice. NTCP-inhibition strongly aggravated weight loss in BDL mice, but not in other cholestatic models studied. NTCP-inhibition reduced biliary BS output in DDC-fed and Atp8b1-G308V mice by ∼50% while phospholipid (PL) output was maintained, resulting in a higher PL/BS ratio. Conversely, liver injury in Abcb4 deficient mice, lacking biliary phospholipid output, was aggravated after myrcludex B treatment. Conclusion: NTCP-inhibition by myrcludex B has hepatoprotective effects, by reducing BS load in hepatocytes and increasing the biliary PL/BS ratio. High micromolar plasma BS levels after NTCP-inhibition were well tolerated. NTCP-inhibition may be beneficial in selected forms of cholestasis. (Hepatology 2018)

    Inhibition of Hepatic Bile Acid Uptake by Myrcludex B Promotes Glucagon-Like Peptide-1 Release and Reduces Obesity

    No full text
    Background & Aims: Bile acids are important metabolic signaling molecules. Bile acid receptor activation promotes body weight loss and improves glycemic control. The incretin hormone GLP-1 and thyroid hormone activation of T4 to T3 have been suggested as important contributors. Here, we identify the hepatic bile acid uptake transporter Na+ taurocholate co-transporting polypeptide (NTCP) as target to prolong postprandial bile acid signaling. Methods: Organic anion transporting polypeptide (OATP)1a/1b KO mice with or without reconstitution with human OATP1B1 in the liver were treated with the NTCP inhibitor Myrcludex B for 3.5 weeks after the onset of obesity induced by high fat diet-feeding. Furthermore, radiolabeled T4 was injected to determine the role of NTCP and OATPs in thyroid hormone clearance from plasma. Results: Inhibition of NTCP by Myrcludex B in obese Oatp1a/1b KO mice inhibited hepatic clearance of bile acids from portal and systemic blood, stimulated GLP-1 secretion, reduced body weight, and decreased (hepatic) adiposity. NTCP inhibition did not affect hepatic T4 uptake nor lead to increased thyroid hormone activation. Myrcludex B treatment increased fecal energy output, explaining body weight reductions amongst unaltered food intake and energy expenditure. Conclusions: Pharmacologically targeting hepatic bile acid uptake to increase bile acid signaling is a novel approach to treat obesity and induce GLP1- secretion

    Inactivation of the E3 Ubiquitin Ligase IDOL Attenuates Diet-Induced Obesity and Metabolic Dysfunction in Mice

    No full text
    Objective- The E3 ubiquitin ligase IDOL (inducible degrader of the LDLR [LDL (low-density lipoprotein) receptor]) is a post-transcriptional regulator of LDLR abundance. Model systems and human genetics support a role for IDOL in regulating circulating LDL levels. Whether IDOL plays a broader metabolic role and affects development of metabolic syndrome-associated comorbidities is unknown. Approach and Results- We studied WT (wild type) and Idol(-/-) (Idol-KO) mice in 2 models: physiological aging and diet-induced obesity. In both models, deletion of Idol protected mice from metabolic dysfunction. On a Western-type diet, Idol loss resulted in decreased circulating levels of cholesterol, triglycerides, glucose, and insulin. This was accompanied by protection from weight gain in short- and long-term dietary challenges, which could be attributed to reduced hepatosteatosis and fat mass in Idol-KO mice. Although feeding and intestinal fat uptake were unchanged in Idol-KO mice, their brown adipose tissue was protected from lipid accumulation and had elevated expression of UCP1 (uncoupling protein 1) and TH (tyrosine hydroxylase). Indirect calorimetry indicated a marked increase in locomotion and suggested a trend toward increased cumulative energy expenditure and fat oxidation. An increase in in vivo clearance of reconstituted lipoprotein particles in Idol-KO mice may sustain this energetic demand. In the BXD mouse genetic reference population, hepatic Idol expression correlates with multiple metabolic parameters, thus providing support for findings in the Idol-KO mice. Conclusions- Our study uncovers an unrecognized role for Idol in regulation of whole body metabolism in physiological aging and on a Western-type diet. These findings support Idol inhibition as a therapeutic strategy to target multiple metabolic syndrome-associated comorbidities

    NTCP deficiency in mice protects against obesity and hepatosteatosis

    No full text
    Bile acids play a major role in the regulation of lipid and energy metabolism. Here we propose the hepatic bile acid uptake transporter Na+ taurocholate cotransporting polypeptide (NTCP) as a target to prolong postprandial bile acid elevations in plasma. Reducing hepatic clearance of bile acids from plasma by genetic deletion of NTCP moderately increased plasma bile acid levels, reduced diet-induced obesity, attenuated hepatic steatosis, and lowered plasma cholesterol levels. NTCP and G protein–coupled bile acid receptor–double KO (TGR5–double KO) mice were equally protected against diet-induced obesity as NTCP–single KO mice. NTCP-KO mice displayed decreased intestinal fat absorption and a trend toward higher fecal energy output. Furthermore, NTCP deficiency was associated with an increased uncoupled respiration in brown adipose tissue, leading to increased energy expenditure. We conclude that targeting NTCP-mediated bile acid uptake can be a novel approach to treat obesity and obesity-related hepatosteatosis by simultaneously dampening intestinal fat absorption and increasing energy expenditure

    Hepatic Uptake of Conjugated Bile Acids Is Mediated by Both Sodium Taurocholate Cotransporting Polypeptide and Organic Anion Transporting Polypeptides and Modulated by Intestinal Sensing of Plasma Bile Acid Levels in Mice

    No full text
    The Na1-taurocholate cotransporting polypeptide (NTCP/ SLC10A1) is believed to be pivotal for hepatic uptake of conjugated bile acids. However, plasma bile acid levels are normal in a subset of NTCP knockout mice and in mice treated with myrcludex B, a specific NTCP inhibitor. Here, we elucidated which transport proteins mediate the hepatic uptake of conjugated bile acids and demonstrated intestinal sensing of elevated bile acid levels in plasma in mice. Mice or healthy volunteers were treated with myrcludex B. Hepatic bile acid uptake kinetics were determined in wild-type (WT), organic anion transporting polypeptide (OATP) knockout mice (lacking Slco1a/ 1b isoforms), and human OATP1B1-transgenic mice. Effects of fibroblast growth factor 19 (FGF19) on hepatic transporter mRNA levels were assessed in rat hepatoma cells and in mice by peptide injection or adeno-associated virus-mediated overexpression. NTCP inhibition using myrcludex B had only moderate effects on bile acid kinetics in WT mice, but completely inhibited active transport of conjugated bile acid species in OATP knockout mice. Cholesterol 7a-hydroxylase Cyp7a1 expression was strongly down-regulated upon prolonged inhibition of hepatic uptake of conjugated bile acids. Fgf15 (mouse counterpart of FGF19) expression was induced in hypercholanemic OATP and NTCP knockout mice, as well as in myrcludex B-treated cholestatic mice, whereas plasma FGF19 was not induced in humans treated with myrcludex B. Fgf15/ FGF19 expression was induced in polarized human enterocyte-models and mouse organoids by basolateral incubation with a high concentration (1 mM) of conjugated bile acids. Conclusion: NTCP and OATPs contribute to hepatic uptake of conjugated bile acids in mice, whereas the predominant uptake in humans is NTCP mediated. Enterocytes sense highly elevated levels of (conjugated) bile acids in the systemic circulation to induce FGF15/ 19, which modulates hepatic bile acid synthesis and uptak
    corecore