20 research outputs found
Neutrophilic Cell-Free Exudate Induces Antinociception Mediate by the Protein S100A9
Calcium-binding protein S100A9 (MRP-14) induces antinociceptive effect in an experimental model of painful sensibility and participates of antinociception observed during neutrophilic peritonitis induced by glycogen or carrageenan in mice. In this study, the direct antinociceptive role of the protein S100A9 in neutrophilic cell-free exudates obtained of mice injected with glycogen was investigated. Mice were intraperitoneally injected with a glycogen solution, and after 4, 8, 24, and 48 hours, either the pattern of cell migration of the peritoneal exudate or the nociceptive response of animals was evaluated. The glycogen-induced neutrophilic peritonitis evoked antinociception 4 and 8 hours after inoculation of the irritant. Peritoneal cell-free exudates, collected in different times after the irritant injection, were transferred to naive animals which were submitted to the nociceptive test. The transference of exudates also induced antinociceptive effect, and neutralization of S100A9 activity by anti-S100A9 monoclonal antibody totally reverted this response. This effect was not observed when experiments were made 24 or 48 hours after glycogen injection. These results clearly indicate that S100A9 is secreted during glycogen-induced neutrophilic peritonitis, and that this protein is responsible by antinociception observed in the initial phase of inflammatory reaction. Thus, these data reinforce the hypothesis that the calcium-binding protein S100A9 participates of the endogenous control of inflammatory pain
Neutrophils and the calcium-binding protein MRP-14 mediate carrageenan-induced antinociception in mice.
BACKGROUND: We have previously shown that the calcium-binding protein MRP-14 secreted by neutrophils mediates the antinociceptive response in an acute inflammatory model induced by the intraperitoneal injection of glycogen in mice. AIM: In an attempt to broaden the concept that neutrophils and MRP-14 controls inflammatory pain induced by different type of irritants, in the present study, after demonstrating that carrageenan (Cg) also induces atinociception in mice, we investigated the participation of both neutrophils and MRP-14 in the phenomenon. METHODS: Male Swiss mice were injected intraperitoneally with Cg and after different time intervals, the pattern of cell migration of the peritoneal exudate and the nociceptive response of animals submitted to the writhing test were evaluated. The participation of neutrophils and of the MRP-14 on the Cg effect was evaluated by systemic inoculation of monoclonal antibodies anti-granulocyte and anti-MRP-14. RESULTS: Our results demonstrate that the acute neutrophilic peritonitis evoked by Cg induced antinociception 2, 4 and 8 h after inoculation of the irritant. Monoclonal antibodies anti-granulocyte or anti-MRP-14 reverts the antinociceptive response only 2 and 8 h after Cg injection. The antibody anti-MRP-14 partially reverts the antinociception observed after 4 h of Cg injection while the anti-granulocyte antibody enhances this effect. This effect is reverted by simultaneous treatment of the animals with both antibodies. After 4 h of Cg injection in neutrophil-depleted mice a significant expression of the calcium-binding protein MRP-14 was detected in the cytoplasm of peritoneal macrophages. This suggests that the enhancement of the effect observed after treatment with the anti-neutrophil antibody may be due to secretion of MRP-14 by macrophages. It has also been demonstrated that endogenous opioids and glucocorticoids are not involved in the antinociception observed at the 4th hour after Cg injection. CONCLUSION: These data support the hypothesis that neutrophils and the calcium-binding protein MRP-14 are participants of the endogenous control of inflammatory pain in mice despite the model of acute inflammation used
The spinal anti-inflammatory mechanism of motor cortex stimulation: cause of success and refractoriness in neuropathic pain?
Abstract
Background
Motor cortex stimulation (MCS) is an effective treatment in neuropathic pain refractory to pharmacological management. However, analgesia is not satisfactorily obtained in one third of patients. Given the importance of understanding the mechanisms to overcome therapeutic limitations, we addressed the question: what mechanisms can explain both MCS effectiveness and refractoriness? Considering the crucial role of spinal neuroimmune activation in neuropathic pain pathophysiology, we hypothesized that modulation of spinal astrocyte and microglia activity is one of the mechanisms of action of MCS.
Methods
Rats with peripheral neuropathy (chronic nerve injury model) underwent MCS and were evaluated with a nociceptive test. Following the test, these animals were divided into two groups: MCS-responsive and MCS-refractory. We also evaluated a group of neuropathic rats not stimulated and a group of sham-operated rats. Some assays included rats with peripheral neuropathy that were treated with AM251 (a cannabinoid antagonist/inverse agonist) or saline before MCS. Finally, we performed immunohistochemical analyses of glial cells (microglia and astrocytes), cytokines (TNF-α and IL-1β), cannabinoid type 2 (CB2), μ-opioid (MOR), and purinergic P2X4 receptors in the dorsal horn of the spinal cord (DHSC).
Findings
MCS reversed mechanical hyperalgesia, inhibited astrocyte and microglial activity, decreased proinflammatory cytokine staining, enhanced CB2 staining, and downregulated P2X4 receptors in the DHSC ipsilateral to sciatic injury. Spinal MOR staining was also inhibited upon MCS. Pre-treatment with AM251 blocked the effects of MCS, including the inhibitory mechanism on cells. Finally, MCS-refractory animals showed similar CB2, but higher P2X4 and MOR staining intensity in the DHSC in comparison to MCS-responsive rats.
Conclusions
These results indicate that MCS induces analgesia through a spinal anti-neuroinflammatory effect and the activation of the cannabinoid and opioid systems via descending inhibitory pathways. As a possible explanation for MCS refractoriness, we propose that CB2 activation is compromised, leading to cannabinoid resistance and consequently to the perpetuation of neuroinflammation and opioid inefficacy
Involvement of proteinase-activated receptors 1 and 2 in spreading and phagocytosis by murine adherent peritoneal cells: Modulation by the C-terminal of S100A9 protein
Proteinase-activated receptors (PAR) are widely recognized for their modulatory properties in inflammatory and immune responses; however, their direct role on phagocyte effector functions remains unknown. S100A9, a protein secreted during inflammatory responses, deactivates activated peritoneal macrophages, and its C-terminal portion inhibits spreading and phagocytosis of adherent peritoneal cells. Herein, the effect of PAR1 and PAR2 agonists was investigated on spreading and phagocytosis by adherent peritoneal cells, as well as the ability of murine C-terminal of S100A9 peptide (mS100A9p) to modulate this effect. Adherent peritoneal cells obtained from mouse abdominal cavity were incubated with PAR1 and PAR2 agonists and spreading and phagocytosis of Candida albicans particles were evaluated. PAR1 agonists increased both the spreading and the phagocytic activity, but PAR2 agonists only increased the spreading index. mS100A9p reverted both the increased spreading and phagocytosis induced by PAR1 agonists, but no interference in the increased spreading induced by PAR2 agonists was noticed. The shorter homologue peptide to the C-terminal of mS100A9p, corresponding to the H(92)-E(97) region, also reverted the increased spreading and phagocytosis induced by PAR1 agonists. These findings show that proteinase-activated receptors have an important role for spreading and phagocytosis of adherent peritoneal cells, and that the pepticle corresponding to the C-terminal of S100A9 protein is a remarkable candidate for use as a novel compound to modulate PAR1 function. (C) 2009 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao de Amparo A Pesquisa do Estado de Sao Paulo (FAPESP)Fundação ButantanFundacao Butanta
Motor cortex stimulation inhibits thalamic sensory neurons and enhances activity of PAG neurons: Possible pathways for antinociception
Motor cortex stimulation is generally suggested as a therapy for patients with chronic and refractory neuropathic pain. However, the mechanisms underlying its analgesic effects are still unknown. In a previous study, we demonstrated that cortical stimulation increases the nociceptive threshold of naive conscious rats with opioid participation. In the present study, we investigated the neurocircuitry involved during the antinociception induced by transdural stimulation of motor cortex in naive rats considering that little is known about the relation between motor cortex and analgesia. The neuronal activation patterns were evaluated in the thalamic nuclei and midbrain periaqueductal gray. Neuronal inactivation in response to motor cortex stimulation was detected in thalamic sites both in terms of immunolabeling (Zif268/Fos) and in the neuronal firing rates in ventral posterolateral nuclei and centromedian-parafascicular thalamic complex. This effect was particularly visible for neurons responsive to nociceptive peripheral stimulation. Furthermore, motor cortex stimulation enhanced neuronal firing rate and Fos immunoreactivity in the ipsilateral periaqueductal gray. We have also observed a decreased Zif268, delta-aminobutyric acid (GABA), and glutamic acid decarboxylase expression within the same region, suggesting an inhibition of GABAergic interneurons of the midbrain periaqueductal gray, consequently activating neurons responsible for the descending pain inhibitory control system. Taken together, the present findings suggest that inhibition of thalamic sensory neurons and disinhibition of the neurons in periaqueductal gray are at least in part responsible for the motor cortex stimulation-induced antinociception. (C) 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao PauloFundacao de Amparo a Pesquisa do Estado de Sao PauloHospital SirioLibanesHospital Sirio-LibanesConselho Nacional de Desenvolvimento Cientifico e TecnologicoConselho Nacional de Desenvolvimento Cientifico e Tecnologic
Systemic and Peripheral Mechanisms of Cortical Stimulation-Induced Analgesia and Refractoriness in a Rat Model of Neuropathic Pain
Epidural motor cortex stimulation (MCS) is an effective treatment for refractory neuropathic pain; however, some individuals are unresponsive. In this study, we correlated the effectiveness of MCS and refractoriness with the expression of cytokines, neurotrophins, and nociceptive mediators in the dorsal root ganglion (DRG), sciatic nerve, and plasma of rats with sciatic neuropathy. MCS inhibited hyperalgesia and allodynia in two-thirds of the animals (responsive group), and one-third did not respond (refractory group). Chronic constriction injury (CCI) increased IL-1β in the nerve and DRG, inhibited IL-4, IL-10, and IL-17A in the nerve, decreased β-endorphin, and enhanced substance P in the plasma, compared to the control. Responsive animals showed decreased NGF and increased IL-6 in the nerve, accompanied by restoration of local IL-10 and IL-17A and systemic β-endorphin. Refractory animals showed increased TNF-α and decreased IFNγ in the nerve, along with decreased TNF-α and IL-17A in the DRG, maintaining low levels of systemic β-endorphin. Our findings suggest that the effectiveness of MCS depends on local control of inflammatory and neurotrophic changes, accompanied by recovery of the opioidergic system observed in neuropathic conditions. So, understanding the refractoriness to MCS may guide an improvement in the efficacy of the technique, thus benefiting patients with persistent neuropathic pain
Transdural motor cortex stimulation reverses neuropathic pain in rats: A profile of neuronal activation
Motor cortex stimulation (MCS) has been used to treat patients with neuropathic pain resistant to other therapeutic approaches; however, the mechanisms of pain control by MCS are still not clearly understood. We have demonstrated that MCS increases the nociceptive threshold of naive conscious rats, with opioid participation. In the present study, the effect of transdural MCS on neuropathic pain in rats subjected to chronic constriction injury of the sciatic nerve was investigated. In addition, the pattern of neuronal activation, evaluated by Fos and Zif268 immunolabel, was performed in the spinal cord and brain sites associated with the modulation of persistent pain. MCS reversed the mechanical hyperalgesia and allodynia induced by peripheral neuropathy. After stimulation, Fos immunoreactivity (Fos-IR) decreased in the dorsal horn of the spinal cord and in the ventral posterior lateral and medial nuclei of the thalamus, when compared to animals with neuropathic pain. Furthermore, the MCS increased the Fos-IR in the periaqueductal gray, the anterior cingulate cortex and the central and basolateral amygdaloid nuclei. Zif268 results were similar to those obtained for Fos, although no changes were observed for Zif268 in the anterior cingulate cortex and the central amygdaloid nucleus after MCS. The present findings suggest that MCS reverts neuropathic pain phenomena in rats, mimicking the effect observed in humans, through activation of the limbic and descending pain inhibitory systems. Further investigation of the mechanisms involved in this effect may contribute to the improvement of the clinical treatment of persistent pain. (c) 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Hospital Sirio-LibanesHospital Sirio-LibanesConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
Nox2-dependent neuroinflammation in an EAE model of multiple sclerosis
Multiple sclerosis (MS) is an inflammatory disease of the CNS, characterized by demyelination, focal inflammatory infiltrates and axonal damage. Oxidative stress has been linked to MS pathology. Previous studies have suggested the involvement of NADPH oxidase 2 (Nox2), an enzyme that catalyzes the reduction of oxygen to produce reactive oxygen species, in the MS pathogenesis. The mechanisms of Nox2 activation on MS are unknown. The purpose of this study was to investigate the effect of Nox2 deletion on experimental autoimmune encephalomyelitis (EAE) onset and severity, on astrocyte activation as well as on pro-inflammatory and anti-inflammatory cytokine induction in striatum and motor cortex