78 research outputs found
Granulocyte\u2013colony stimulating factor plus plerixafor inpatients with \u2013thalassemia major results in the effective mobilization of primitiveCD34+ cells with specific gene expression profile
Successful gene therapy for \u3b2-thalassemia requires optimal numbers of autologous gene-transduced hematopoietic stem and progenitor cells (HSPCs) with high repopulating capacity. Previous studies suggested superior mobilization in these patients by the combination of granulocyte\u2013colony stimulating factor (G-CSF) plus plerixafor over single agents. We mobilized four adult patients using G-CSF+plerixafor to assess the intra-individual variation of the circulating CD34+ cells number and subtypes preand post-plerixafor administration. The procedure was well-tolerated and the target cell dose of 658.106 CD34+ cells/kg was achieved in three of them with one apheresis procedure. The addition of plerixafor unanimously increased the number of circulating CD34+ cells, and the frequency of the most primitive CD34+ subtypes: CD34+/38- and CD34+/133+/38- as well as the in vitro clonogenic potency. Microarray analyses of CD34+ cells purified from the leukapheresis of one patient mobilized twice, with G-CSF and with G-CSF+plerixafor, highlighted in G-CSF+plerixafor-mobilized CD34+ cells, higher levels of expression genes involved in HSPC motility, homing, and cell cycles. In conclusion, G-CSF+plerixafor in \u3b2-thalassemia patients mobilizes optimal numbers of HSPCs with characteristics that suggest high capacity of engraftment after transplantation
Predictors of CD34+ cell mobilization and collection in adult men with germ cell tumors: implications for the salvage treatment strategy
BACKGROUND:
High-dose chemotherapy with tandem or triple carboplatin and etoposide course is currently the first curative choice for relapsing GCT. The collection of an adequate amount of hematopoietic (CD34(+)) stem cells is a priority.
PATIENTS AND METHODS:
We analyzed data of patients who underwent HDCT at 2 referral institutions. Chemotherapy followed by myeloid growth factors was applied in all cases. Uni- and multivariable models were used to evaluate the association between 2 prespecified variables and mobilization parameters. Analyses included only the first mobilizing course of chemotherapy and mobilization failures.
RESULTS:
A total of 116 consecutive patients underwent a mobilization attempt from December 1995 to November 2012. Mobilizing regimens included cyclophosphamide (CTX) 7 gr/m(2) (n = 39), cisplatin, etoposide, and ifosfamide (PEI) (n = 42), paclitaxel, cisplatin, and gemcitabine (TPG) (n = 11), and mixed regimens (n = 24). Thirty-seven percent were treated in first-line, 50% (n = 58) in second-line, 9.5% (n = 11) and 3.4% (n = 4) in third- and fourth-line settings, respectively. Six patients did not undergo HDCT because they were poor mobilizers, 2 in first- and second-line (1.9%), and 4 beyond the second-line (26.7%). In the multivariable model, third-line or later setting was associated with a lower CD34(+) cell peak/ÎĽL (P = .028) and a lower total CD34(+)/kg collected (P = .008). The latter was also influenced by the type of mobilizing regimen (P < .001).
CONCLUSION:
A decline in significant mobilization parameters was found, primarily depending on the pretreatment load. Results lend support to the role of CD34(+) cell mobilization in the therapeutic algorithm of relapsing GCT, for whom multiple HDCT courses are still an option, and potentially a cure
A Knowledge, Attitude, and Perception Study on Flu and COVID-19 Vaccination during the COVID-19 Pandemic: Multicentric Italian Survey Insights
In January 2020, Chinese health authorities identified a novel coronavirus strain never before isolated in humans. It quickly spread across the world, and was eventually declared a pandemic, leading to about 310 million confirmed cases and to 5,497,113 deaths (data as of 11 January 2022). Influenza viruses affect millions of people during cold seasons, with high impacts, in terms of mortality and morbidity. Patients with comorbidities are at a higher risk of acquiring severe problems due to COVID-19 and the flu-infections that could impact their underlying clinical conditions. In the present study, knowledge, attitudes, and opinions of the general population regarding COVID-19 and influenza immunization were evaluated. A multicenter, web-based, cross-sectional study was conducted between 10 February and 12 July 2020, during the first wave of SARS-CoV-2 infections among the general population in Italy. A sample of 4116 questionnaires was collected at the end of the study period. Overall, 17.5% of respondents stated that it was unlikely that they would accept a future COVID-19 vaccine (n = 720). Reasons behind vaccine refusal/indecision were mainly a lack of trust in the vaccine (41.1%), the fear of side effects (23.4%), or a lack of perception of susceptibility to the disease (17.1%). More than 50% (53.8%; n = 2214) of the sample participants were willing to receive flu vaccinations in the forthcoming vaccination campaign, but only 28.2% of cases had received it at least once in the previous five seasons. A higher knowledge score about SARS-CoV-2/COVID-19 and at least one flu vaccination during previous influenza seasons were significantly associated with the intention to be vaccinated against COVID-19 and influenza. The continuous study of factors, determining vaccination acceptance and hesitancy, is fundamental in the current context, in regard to improve vaccination confidence and adherence rates against vaccine preventable diseases
Hypericum perforatum treatment: effect on behaviour and neurogenesis in a chronic stress model in mice
<p>Abstract</p> <p>Background</p> <p>Extracts of <it>Hypericum perforatum </it>(St. John's wort) have been traditionally recommended for a wide range of medical conditions, in particular mild-to-moderate depression. The present study was designed to investigate the effect of Hypericum perforatum treatment in a mouse model of anxiety/depressive-like behavior, induced by chronic corticosterone administration.</p> <p>Methods</p> <p>CD1 mice were submitted to 7 weeks corticosterone administration and then behavioral tests as Open Field (OF), Novelty-Suppressed Feeding (NSF), Forced Swim Test (FST) were performed. Cell proliferation in hippocampal dentate gyrus (DG) was investigated by both 5-bromo-2'-deoxyuridine (BrdU) and doublecortin (DCX) immunohistochemistry techniques and stereological procedure was used to quantify labeled cells. Golgi-impregnation method was used to evaluate changes in dendritic spines in DG. Hypericum perforatum (30 mg/Kg) has been administered for 3 weeks and then neural development in the adult hippocampus and behavioral changes have been examined.</p> <p>Results</p> <p>The anxiety/depressive-like state due to chronic corticosterone treatment was reversed by exogenous administration of Hypericum perforatum; the proliferation of progenitor cells in mice hippocampus was significantly reduced under chronic corticosterone treatment, whereas a long term treatment with Hypericum perforatum prevented the corticosterone-induced decrease in hippocampal cell proliferation. Corticosterone-treated mice exhibited a reduced spine density that was ameliorated by Hypericum perforatum administration.</p> <p>Conclusion</p> <p>These results provide evidence of morphological adaptations occurring in mature hippocampal neurons that might underlie resilient responses to chronic stress and contribute to the therapeutic effects of chronic Hypericum perforatum treatment.</p
Synthetic Nanoparticles for Vaccines and Immunotherapy
The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such
as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the
science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004
X-ray polarimetry of the accreting pulsar GX 301-2
The phase- and energy-resolved polarization measurements of accreting X-ray
pulsars (XRPs) allow us to test different theoretical models of their emission,
as well as to provide an avenue to determine the emission region geometry. We
present the results of the observations of the XRP GX 301-2 performed with the
Imaging X-ray Polarimetry Explorer (IXPE). GX 301-2 is a persistent XRP with
one of the longest known spin periods of ~680 s. A massive hyper-giant
companion star Wray 977 supplies mass to the neutron star via powerful stellar
winds. We do not detect significant polarization in the phase-averaged data
using spectro-polarimetric analysis, with the upper limit on the polarization
degree (PD) of 2.3% (99% confidence level). Using the phase-resolved
spectro-polarimetric analysis we get a significant detection of polarization
(above 99% c.l.) in two out of nine phase bins and marginal detection in three
bins, with a PD ranging between ~3% and ~10%, and a polarization angle varying
in a very wide range from ~0 deg to ~160 deg. Using the rotating vector model
we obtain constraints on the pulsar geometry using both phase-binned and
unbinned analysis getting excellent agreement. Finally, we discuss possible
reasons for a low observed polarization in GX 301-2.Comment: 10 pages, 10 figures, submitted to A&
Copernicus Ocean State Report, issue 6
The 6th issue of the Copernicus OSR incorporates a large range of topics for the blue, white and green ocean for all European regional seas, and the global ocean over 1993–2020 with a special focus on 2020
- …