3,189 research outputs found

    Two repelling random walks on Z\mathbb Z

    Full text link
    We consider two interacting random walks on Z\mathbb{Z} such that the transition probability of one walk in one direction decreases exponentially with the number of transitions of the other walk in that direction. The joint process may thus be seen as two random walks reinforced to repel each other. The strength of the repulsion is further modulated in our model by a parameter β0\beta \geq 0. When β=0\beta = 0 both processes are independent symmetric random walks on Z\mathbb{Z}, and hence recurrent. We show that both random walks are further recurrent if β(0,1]\beta \in (0,1]. We also show that these processes are transient and diverge in opposite directions if β>2\beta > 2. The case β(1,2]\beta \in (1,2] remains widely open. Our results are obtained by considering the dynamical system approach to stochastic approximations.Comment: 17 pages. Added references and corrected typos. Revised the argument for the convergence to equilibria of the vector field. Improved the proof for the recurrence when beta belongs to (0,1); leading to the removal of a previous conjectur

    Affine semigroups having a unique Betti element

    Full text link
    We characterize affine semigroups having one Betti element and we compute some relevant non-unique factorization invariants for these semigroups. As an example, we particularize our description to numerical semigroups.Comment: 8 pages, 1 figure. To appear in Journal of Algebra and its Application

    Bound states in the continuum: localization of Dirac-like fermions

    Full text link
    We report the formation of bound states in the continuum for Dirac-like fermions in structures composed by a trilayer graphene flake connected to nanoribbon leads. The existence of this kind of localized states can be proved by combining local density of states and electronic conductance calculations. By applying a gate voltage, the bound states couple to the continuum, yielding a maximum in the electronic transmission. This feature can be exploited to identify bound states in the continuum in graphene-based structures.Comment: 7 pages, 5 figure

    Ripples in a string coupled to Glauber spins

    Get PDF
    Each oscillator in a linear chain (a string) interacts with a local Ising spin in contact with a thermal bath. These spins evolve according to Glauber dynamics. Below a critical temperature, a rippled state in the string is accompanied by a nonzero spin polarization. The system is shown to form ripples in the string which, for slow spin relaxation, vibrates rapidly about quasi-stationary states described as snapshots of a coarse-grained stroboscopic map. For moderate observation times, ripples are observed irrespective of the final thermodynamically stable state (rippled or not).Comment: 5 pages, 2 figure
    corecore