49 research outputs found

    Theory of weakly nonlinear self sustained detonations

    Full text link
    We propose a theory of weakly nonlinear multi-dimensional self sustained detonations based on asymptotic analysis of the reactive compressible Navier-Stokes equations. We show that these equations can be reduced to a model consisting of a forced, unsteady, small disturbance, transonic equation and a rate equation for the heat release. In one spatial dimension, the model simplifies to a forced Burgers equation. Through analysis, numerical calculations and comparison with the reactive Euler equations, the model is demonstrated to capture such essential dynamical characteristics of detonations as the steady-state structure, the linear stability spectrum, the period-doubling sequence of bifurcations and chaos in one-dimensional detonations and cellular structures in multi- dimensional detonations

    Unification of step bunching phenomena on vicinal surfaces

    Get PDF
    We unify step bunching (SB) instabilities occurring under various conditions on crystal surfaces below roughening. We show that when attachment-detachment of atoms at step edges is the rate-limiting process, the SB of interacting, concentric circular steps is equivalent to the commonly observed SB of interacting straight steps under deposition, desorption, or drift. We derive a continuum Lagrangian partial differential equation, which is used to study the onset of instabilities for circular steps. These findings place on a common ground SB instabilities from numerical simulations for circular steps and experimental observations of straight steps

    On "jamitons," self-sustained nonlinear traffic waves

    Full text link
    "Phantom jams," traffic blockages that arise without apparent cause, have long frustrated transportation scientists. Herein, we draw a novel homology between phantom jams and a related class of self-sustained transonic waves, namely detonations. Through this analogy, we describe the jam structure; favorable agreement with reported measurements from congested highways is observed. Complementary numerical simulations offer insights into the jams' development. Our results identify conditions likely to result in a dangerous concentration of vehicles and thereby lend guidance in traffic control and roadway design.Comment: 6 pages, 4 figure

    Theory of weakly nonlinear self-sustained detonations

    Get PDF
    We propose a theory of weakly nonlinear multidimensional self-sustained detonations based on asymptotic analysis of the reactive compressible Navier-Stokes equations. We show that these equations can be reduced to a model consisting of a forced unsteady small-disturbance transonic equation and a rate equation for the heat release. In one spatial dimension, the model simplifies to a forced Burgers equation. Through analysis, numerical calculations and comparison with the reactive Euler equations, the model is demonstrated to capture such essential dynamical characteristics of detonations as the steady-state structure, the linear stability spectrum, the period-doubling sequence of bifurcations and chaos in one-dimensional detonations and cellular structures in multidimensional detonations

    A Correction Function Method for Poisson problems with interface jump conditions

    Get PDF
    In this paper we present a method to treat interface jump conditions for constant coefficients Poisson problems that allows the use of standard “black box” solvers, without compromising accuracy. The basic idea of the new approach is similar to the Ghost Fluid Method (GFM). The GFM relies on corrections applied on nodes located across the interface for discretization stencils that straddle the interface. If the corrections are solution-independent, they can be moved to the right-hand-side (RHS) of the equations, producing a problem with the same linear system as if there were no jumps, only with a different RHS. However, achieving high accuracy is very hard (if not impossible) with the “standard” approaches used to compute the GFM correction terms. In this paper we generalize the GFM correction terms to a correction function, defined on a band around the interface. This function is then shown to be characterized as the solution to a PDE, with appropriate boundary conditions. This PDE can, in principle, be solved to any desired order of accuracy. As an example, we apply this new method to devise a 4th order accurate scheme for the constant coefficients Poisson equation with discontinuities in 2D. This scheme is based on (i) the standard 9-point stencil discretization of the Poisson equation, (ii) a representation of the correction function in terms of bicubics, and (iii) a solution of the correction function PDE by a least squares minimization. Several applications of the method are presented to illustrate its robustness dealing with a variety of interface geometries, its capability to capture sharp discontinuities, and its high convergence rate.National Science Foundation (U.S.) (Grant DMS-0813648)Brazil. Coordenacao de Aperfeicoamento de Pessoal de Nivel SuperiorFulbright Program (Grant BEX 2784/06-8

    Diffusion and mixing in gravity-driven dense granular flows

    Full text link
    We study the transport properties of particles draining from a silo using imaging and direct particle tracking. The particle displacements show a universal transition from super-diffusion to normal diffusion, as a function of the distance fallen, independent of the flow speed. In the super-diffusive (but sub-ballistic) regime, which occurs before a particle falls through its diameter, the displacements have fat-tailed and anisotropic distributions. In the diffusive regime, we observe very slow cage breaking and Peclet numbers of order 100, contrary to the only previous microscopic model (based on diffusing voids). Overall, our experiments show that diffusion and mixing are dominated by geometry, consistent with fluctuating contact networks but not thermal collisions, as in normal fluids

    A model for shock wave chaos

    Full text link
    We propose the following model equation: ut+1/2(u2uus)x=f(x,us),u_{t}+1/2(u^{2}-uu_{s})_{x}=f(x,u_{s}), that predicts chaotic shock waves. It is given on the half-line x<0x<0 and the shock is located at x=0x=0 for any t0t\ge0. Here us(t)u_{s}(t) is the shock state and the source term ff is assumed to satisfy certain integrability constraints as explained in the main text. We demonstrate that this simple equation reproduces many of the properties of detonations in gaseous mixtures, which one finds by solving the reactive Euler equations: existence of steady traveling-wave solutions and their instability, a cascade of period-doubling bifurcations, onset of chaos, and shock formation in the reaction zone.Comment: 4 pages, 4 figure

    Facet evolution on supported nanostructures: Effect of finite height

    Get PDF
    The surface of a nanostructure relaxing on a substrate consists of a finite number of interacting steps and often involves the expansion of facets. Prior theoretical studies of facet evolution have focused on models with an infinite number of steps, which neglect edge effects caused by the presence of the substrate. By considering diffusion of adsorbed atoms (adatoms) on terraces and attachment-detachment of atoms at steps, we show that these edge or finite height effects play an important role in the structure's macroscopic evolution. We assume diffusion-limited kinetics for adatoms and a homoepitaxial substrate. Specifically, using data from step simulations and a continuum theory, we demonstrate a switch in the time behavior of geometric quantities associated with facets: the facet edge position in a straight-step system and the facet radius of an axisymmetric structure. Our analysis and numerical simulations focus on two corresponding model systems where steps repel each other through entropic and elastic dipolar interactions. The first model is a vicinal surface consisting of a finite number of straight steps; for an initially uniform step train, the slope of the surface evolves symmetrically about the centerline, i.e., the middle step when the number of steps is odd. The second model is an axisymmetric structure consisting of a finite number of circular steps; in this case, we include curvature effects which cause steps to collapse under the effect of line tension. In the first case, we show that the position of the facet edge, measured from the centerline, switches from O(t^1/4) behavior to O(t^1/5) (where t is time). In the second case, the facet radius switches from O(t^1/4) to O(t). For the axisymmetric case, we also predict analytically through a continuum shock wave theory how the individual collapse times are modified by the effects of finite height under the assumption that step interactions are weak compared to the step line tension
    corecore